Zastosowanie algorytmów genetycznych do selekcji cech w optymalizacji modelu maszyn wektorów nośnych dla regresji w aspekcie prognozowania właściwości wytrzymałościowych przędzy
Research and development
Autorzy:
Pełen tekst (ang.) | Abstrakt: Zaproponowany system hybrydowy łączący algorytmy genetyczne z klasyfikatorem w postaci maszyny wektorów nośnych dla regresji (SVMR) został zastosowany dla zoptymalizowania zestawu danych obejmującego właściwości fizyczne włókien dla prognozowania właściwości wytrzymałościowych przędzy. W tym hybrydowym rozwiązaniu porównano zaproponowany model SVMR z modelem „zaszumionym”, w którym użyto pełny zestaw danych właściwości fizycznych włókien jako danych wejściowych w prognozowaniu. Algorytmy genetyczne w selekcji cech zostały użyte na etapie wstępnego przetwarzania, którego celem było znalezienie i wybranie najlepszych zmiennych, które najefektywniej są powiązane z przewidywaniem wytrzymałości przędzy. Hybrydowe rozwiązanie wykazało lepsze efekty przewidywania wytrzymałości przędzy w porównaniu z modelem „zaszumionym”. Jednakże wyniki badań wykazały, że do realizacji zadania polegającego na wyborze cech z selekcji najkorzystniejszych właściwości włókien bardzo przydatne są również algorytmy genetyczne, które umożliwiają uzyskanie wysokiej dokładności prognozowania wytrzymałości przędzy. |
Tagi:
genetic algorithm, feature selection, support vector machines for regression, yarn properties.
Cytowanie:
Abakar KAA, Yu C. Application of Genetic Algorithm for Feature Selection in Optimisation of SVMR Model for Prediction of Yarn Tenacity. FIBRES & TEXTILES in Eastern Europe 2013; 21, 6(102): 95-99.
Opublikowano w numerze nr 6 (102) / 2013, strony 95–99.