Zastosowanie analizy składników dla poprawy działania automatycznego detektora i klasyfikatora błędów płaskich wyrobów włókienniczych
Research and development
Autorzy:
- Eldessouki Mohamed
Department of Textile Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt - Hassan Mounir
Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia - Hassan Mounir
Department of Textile Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt - Qashqary Khadijah
Department of Fashion Design, Faculty of Art & Design, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia - Shady Ebraheem
Department of Textile Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt
Tagi:
fabric fault detector, image processing, artificial neural networks, principal component analysis.
Cytowanie:
Eldessouki M, Hassan M, Qashqari K, Shady E. Application of Principal Component Analysis to Boost the Performance of an Automated Fabric Fault Detector and Classifier. FIBRES & TEXTILES in Eastern Europe 2014; 22, 4(106): 51-57.