Full text | references | Abstract: An objective method for fabric smoothness usually comprises two widely used approaches: 3D laser scanning and 2D image processing, which are represented by GLCM in this work. To make a comparison of them and find out which one is more effective, four 3D parameters (variance, roughness, torsion and interquartile deviation) and eight 2D parameters (mean value and standard deviation of energy, entropy, contrast and correlation) were extracted for AATCC SA replicas and fabrics. Results show that both 3D laser scanning and 2D image processing technology can be used to study smoothness. With regard to accuracy, the 3D laser scanning method is better than the 2D image processing method. Roughness in 3D parameters and the standard deviation of Entropy in 2D parameters have the highest correlation coefficient with the wrinkling grade of replicas, -0.965 and -0.917 respectively. The verification experiment of fabrics proves that roughness can characterise the wrinkling degree better as well. Furthermore, through the work of this paper, we find that the wrinkling degree differences between two adjacent AATCC SA replicas are not the same; the difference between SA-1 and SA-2 is significant, while that between SA-3 and SA-3.5 as well as SA-4 and SA-5 is not so obvious. It is advisable that the AATCC SA replicas for grades 3, 3.5, 4 and 5 be adjusted or improved. |