Full text | Abstract: Dibutyrylchitin (DBCH) was obtained from native krill chitin by its esterification with butyric anhydride. In this study, DBCH was the initial material for the fibre formation. DBCH fibres were manufactured from a polymer solution in ethyl alcohol by extrusion. Because a dry-wet formation method was applied, the fibres obtained had a porous core. The microporous DBCH fibres were then treated with aqueous KOH solutions. By applying various parameters of the alkaline treatment, DBCH fibres can be transformed into fibres from the regenerated chitin or even into chitosan fibres. The use of a potassium hydroxide solution as an alkaline medium enables a total reconstruction of the original supermolecular structure of chitin. When transforming DBCH fibres into the regenerated chitin fibres, diluted KOH solutions were applied, whereas treatment at an elevated temperature with saturated KOH solutions obtained chitosan fibres with various values of deacetylation degree. At every stage of the treatment, the structural changes in the fibres were examined using IR spectroscopy (FTIR), wide-angle X-ray diffraction and scanning electron microscopy (SEM). |