Formation of Poly(Vinyl Alcohol)/Cationic Starch Blend Nanofibres via the Electrospinning Technique: The Influence of Different Factors
Research and development
Authors:
Full text | Abstract: This paper describes the formation of bicomponent nanofibres from poly(vinyl alcohol) (PVA) and modified cationic starch (CS) mixed solutions (PVA/CS mass ratio 3/1) with different total concentrations of solids in water (8, 10 and 12 wt.%) via the electrospinning technique using two types of rotating electrodes (a plain cylindrical electrode and an electrode with tines). The best results were obtained using a PVA/CS solution with a solid concentration of 8 wt.%. The viscosity of 12 wt.% spinning solution was significantly higher compared to that with a concentration of 8 wt.%. These differences in viscosity had a significant influence on the process of electrospinning, as thinner nanofibres were produced from the less viscous solution. In comparison with the cylindrical electrode, the electrode with tines showed a better performance, where the diameter distribution of nanofibres and the electrospinning process were improved. The purpose of the second part of the experiment was to investigate the influence of different amounts of ethanol in the 8 wt.% PVA/CS solution on the electrospinning process and the properties of nanofibres. The results showed that 3 wt.% of ethanol in the spinning solution influenced the diameter of nanofibres in comparison with 9 wt.% of ethanol (the diameter of nanofibres significantly increased in this case). |
Tags:
electrospinning, nanofibre, PVA, cationic starch.
Citation:
Šukytė J, Adomavičiūtė E, Milašius R, Bendoraitienė J, Danilovas PP. Formation of Poly(Vinyl Alcohol)/Cationic Starch Blend Nanofibres via the Electrospinning Technique: The Influence of Different Factors. FIBRES & TEXTILES in Eastern Europe 2012; 20, 3(92): 16-20.
Published in issue no 3 (92) / 2012, pages 16–20.