Full text | Abstract: Hydrogels are cross-linked three-dimensional macromolecular networks that contain a large fraction of water within their structure. One of the most important properties of alginate hydrogels, leading to their broad versatility, is their ability for controlled uptake, release and retention of molecules. This ability, in turn, is due to specific interactions of the macromolecular network with the diffusing or retained molecule. Raman spectroscopy has been employed to characterise the diffusion properties of solutes in hydrogels. Besides their application in the food sector, they are used in many biomedical, pharmaceutical and technical areas; for example, as natural tissues or drug carriers. In the latter case, controlled release of drugs from a wound dressing is of particular interest – or ion exchange between the drug and the structure of the dressing. Raman active vibrations were used to show the areas responsible for the penetration of the model azo-dyes (based on non-genotoxic benzidine analogs) within Ca-alginate/carboxymethylcellulose Medisorb A wound dressing. In this case, the intensity of the stretching bands was used to obtain the concentration profiles of the model dye in alginate/carboxymethylcellulose gel (Medisorb A). |