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Abstract
After the wave of ISO 9000 certification, a large number of enterprises started to accumulate 
a great amount of data regarding their processes. False-twist texturing plants used these 
data to set up a process and improve their operations. This article  shows that data mining, 
partial least squares modelling and genetic algorithm optimisation can provide further 
use for these data to benefit the company in many areas, such as setting up adequate 
process parameters without requiring an expert to do so, providing the customer with 
the requirements that will fulfill his needs, simplifying machine changes, and reducing lot 
changes. The results show that the model and optimisation structure put together can find 
multiple solutions for machine parameters by providing the multiple product properties 
or quality levels desired. The prediction of yarn properties, such as linear density (Dtex), 
elongation, tenacity and boiled water shrinkage were made with R2 between 0.80 and 0.99.
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n	Introduction
At the SYFA (Synthetic Yarn and Fi-
bre Association) 2007 summer con-
ference [1], PCI (Petrochemical Con-
sultants International) Fibres reported  
10.6 kg/capita of fibre consumption in 
2006 as an average worldwide, with poly-
ester filament yarn having a share of 23% 
of the global fibre market. In the global 

synthetic market, polyester represents 
71% of the market - nearly 28 million 
tons per year as far as the 74% average 
capacity utilisation is considered. In this 
context, after spinning, false-twist textur-
ing remains the main filament converting 
process currently used worldwide. The 
false-twist texturing process uses a POY 
(partial oriented yarn) as the raw mate-
rial to obtain the yarn properties desired. 
The required features of the respective 
POY will be achieved by properly adjust-
ing the texturing machine parameters. To 
understand the relationships and interac-
tions in the process, some studies have 
been carried out.

Based on the fundamentals of mechan-
ics  [2], a new twist theory for friction 
discs is presented using experimental data 
to prove it. Using the principle of energy 
and mass conservation, elongation curve 
analyses as well as the twist structure [3] 
describe how to predict yarn properties 
using filament data. A mathematic model 
is proposed that could predict the elon-
gation, tenacity and initial modulus. Us-
ing design of experiments (DOE) [4] for 
microfibre, three raw material types were 
textured focusing on 4 factors (draw ra-
tio, disc surface speed to yarn speed ratio 
(D/Y), first heater temperature and heater 
contact time). The responses analysed 
were tensile properties, crimp charac-
teristics, dye uptake, broken filaments, 
and tight spots. The Lagrange approach 
was used [5] to simulate the false twist 
texturing process. Another DOE is pre-
sented [6] to demonstrate the influence of 
temperature in the first heater, disc space, 
draw ratio and D/Y on the yarn proper-

ties. The Box-Behnken DOE design with 
3 levels was used, allowing 27 experi-
ments to verify the relationships, which 
also showed relevant interactions.

The majority of the articles previously 
mentioned only regard the false twist 
texturing of polyester and do not utilise 
any multivariate approach, such as partial 
least squares. This article fills that gap by 
presenting its functionality.

In a texturing manufacturing environ-
ment, optimisation takes place daily 
through causal models built in designed 
experiments, as mentioned previously, 
that relate the independent effects of all 
factors that can be changed in the proc-
ess with the response variables of inter-
est. However, the false twist process is 
extremely complex and contains a vast 
number of manipulated factors, of which 
the majority are highly correlated within 
the process or follow operational con-
straints. For example, yarn shrinkage 
correlates with the linear density (Dtex), 
Dtex per filament, temperatures and pro-
duction speeds; in such cases complete 
causal models are not easily obtained. 
Considering that ISO 9000:2000 (as well 
as older versions) brought discipline to 
companies as well as guidelines to store 
large quantities of data, a great and sig-
nificant amount of quality data are avail-
able for a range of operational working 
conditions of the process. These data can 
provide the means to build one restricted 
causal model that shows how process 
groups or raw material factors can impact 
product quality in the form of subspaces 
of the original factors. This can be con-
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sidered as being a big DOE developed 
over time in the manufacturing environ-
ment. Linear or non linear latent variable 
models built using partial least squares 
are ideal for such a reality. See [7] for a 
similar approach to extrusion.

In this article, a methodology is pro-
posed for process development and con-
trol based on optimisations of subspaces 
as defined by latent variables built with 
existing and available data. Models with 
linear latent variables are developed and 
an optimization strategy using genetic 
algorithms is implemented to resolve 
important goals of product development, 
process control, planning flexibility and 
reduction in machine setup times. A PLS 
(partial least square) methodology using 
Minitab software to model the process 
and a genetic algorithm using Excel solv-
er to optimize it were applied to the false 
twist polyester texturing process, which 
proved to be extremely effective in de-
termining process conditions that yield 
the specific quality goals desired. This 
reduces the development time required to 
obtain the final product as well as its vari-
ability, due to not optimised parameters.

 	Modelling and optimisation 
using historical data

In the development and/or optimisation 
of chemical textile processes, it is essen-
tial to identify which process variables 
have an effect on the final product qual-
ity as well as their variability throughout 
the many process stages. If a dynamic 
fundamental model of the process is 
available, the company can use it to de-
velop new products as well as optimise 
or control the process against different 
raw material variations in the environ-
ment or structural conditions. Alterna-
tively, an empirical model that estimates 
the causal effects of adjustable, process 
and raw material variables in the qual-
ity process can be obtained by planned 
experiments. These models can be used 
in a similar way (within the working re-
gion defined) to optimise or control the 
process [8]. However, for the majority of 
complex processes, fundamental models 
that consider all variables are not avail-
able, and for processes consisting of vast 
numbers of variables (any chemical or 
synthetic process can reach such a lev-
el), with highly correlated variables that 
can not be independently manipulated, 
it becomes extremely difficult to obtain 
empirical models that will represent the 

causal relationships that exist in the proc-
ess within the operational constraints, 
cost constraints or even time to market 
constraints.

With the broadening of process stand-
ardisation and ISO (International Stand-
ardisation Organisation) standard uti-
lisation, a mindset for using historical 
data was created, whose importance and 
utilisation is increasing daily. Primarily, 
the data were used to control and trace 
information simply. Currently, the data 
are identified as potentially useful infor-
mation through which an immeasurable 
quantity of knowledge can be generated 
if adequate data analysis has taken place.

	 New approach 
for the modelling

In January 2003 at the TYAA (Textured 
Yarn American Association), currently 
SYFA, winter conference in Charlotte 
some works regarding texturing and 
spinning modelling were presented. Both 
works used the fundamentals of me-
chanics to achieve the modelling. As [9] 
stated in 2002, like most developments 
on the mechanical side of the textile in-
dustry, inventions and developments in 
yarn texturing have not come as a ration-
al sequence from basic science, through 

engineering calculations to practical im-
plementation. Empirical advance based 
on intuitive understanding has been the 
norm. This is not to say that academic re-
search has been wasted. As the science of 
any aspect of the subject is clarified, this 
feeds into the qualitative understanding 
of those concerned with practical opera-
tions. The mathematics may be ignored, 
but the ideas enter the technical con-
sciousness.

From unpublished works, which are used 
by leading manufacturing industries, 
such as Unifi Inc and Milliken, models 
are available to explain a causal relation-
ship sufficiently to allow specialists to 
predict yarn properties and process pa-
rameters. No optimisation for the false 
twist texturing process has yet been pro-
posed in literature or by manufacturing 
that is known.

This article proposes a model that can 
improve responses and therefore enable 
the optimisation of the process.

Internal modelling by Unifi Inc using the 
fundamentals of mechanics can provide 
correlation numbers, given in Table  1, 
between the values calculated (YC1 
till 7) and the actual ones (Y1 till 7). An-
other way of verifying this relationship is 
the R2 (R-sq) between the same values 
calculated and the actual ones.

From the comparison shown in Table 1, 
we can observe that some predictions 
need to be improved. The model previ-
ously mentioned (can not be detailed 
due to proprietary reasons) utilises inter-
mediate calculus allowing the equation 
to be built. The intermediate equations 
come from univariate statistics where 
only significant factors are included in 

Table 1. Correlation and R-sq between ac-
tual and calculated data using mechanics 
fundamentals equations. 

Calculated Actual Correlation R-sq, %
YC1 Y1 0.936 87.5
YC2 Y2 0.901 81.2
YC3 Y3 0.701 48.6
YC4 Y4 0.998 99.6
YC5 Y5 0.774 59.7
YC6 Y6 0.443 19.0
YC7 Y7 0.720 51.7

Table 2. Linear regression using all factors to predict Y1, VIF > 5 shows this is not ad-
equate.

Predictor Coef SE Coef T P VIF
Constant -146.00 1127.00 -0.13 0.898

X1 +7.96 30.82 +0.26 0.798   4.238
X2 -0.64 1.23 -0.51 0.610 41.944
X3 -3.69 2.15 -1.72 0.093   4.568
X4 -3.40 110.90 -0.03 0.976   2.522
X5 +1.10 3.29 +0.34 0.739 43.432
X6 +5.16 5.64 +0.91 0.366   5.191
X7 +269.50 182.80 +1.47 0.149   9.102
X8 -110.13 23.22 -4.74 0.000   1.836
X9 +66.13 76.17 +0.87 0.391   4.248

X10 -0.11 0.17 -0.68 0.500   2.514
X11 +435.10 433.00 +1.00 0.321   3.375
X12 -290.90 211.10 -1.38 0.176   3.024
X13 +11.73 8.28 +1.42 0.164   2.853
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the equation. Therefore the quality of the 
intermediate equations will influence the 
final calculations of the data predicted . 
To illustrate this, an example could be 
taken to predict the shrinkage of yarn, in 
which an equation is needed to predict 
the linear density, the yarn temperature 
at the exit of the heater, the orientation 
level, the amount of twist, and the resi-
dence time in the fixation heater. These 
would be some examples of intermediate 
calculation due to the choice of using the 
fundamentals of mechanics; for a multi-
variate approach this is not necessary.

In univariate regression the VIF (Vari-
ance Inflation Factor) is recommended to 
be under 5, but as higher number factors 
are introduced some factors will appear 
where this number will pass the thresh-
old of 5, for example to calculate Y1 if 
all predictors are considered. VIF results 
can be seen in Table 2. This table demon-
strates that univariate regression requires 
fewer predictors or that an multivariate 
approach needs to be considered.

	 A multivariate approach using 
PLS

Further correlation analysis can dem-
onstrate that multicolinearity is present 
within the X variables (the predictors) 
and Y variables (the dependents). A high 
multicolineraty is not desirable as this 
indicates redundant measurements and 
reduced statistical efficiency, which is 
a reasonable justification to use multi-
ple regressions. Multiple regression is a 
statistical technique that can be used to 
analyse the relationship between the one 
unique variable dependent (criteria) and 
various independent variables (predic-
tors). The goal of a multiple regression 
is the use of independent variables whose 
values are known to predict the those of 
selected dependent variables. Each inde-
pendent variable is weighted by the re-
gression analyses procedure to guarantee 
maximum prediction for the independent 
variables. [10]

In the texturing process there is correla-
tion between the factors and responses, 
which justifies the utilisation of partial 
least squares regression. This can also 
be found as a projection of latent struc-
tures in the literature. A model can then 
be built to predict the real values using 
manipulated factors.

For PLS modelling the same group of 
predictors are used for each predicted 

variable. This property is the result of the 
multivariate approach of PLS, therefore 
one variable can not be studied separate-
ly from the group without changing the 
entire group. The algorithm used is NI-
PALS. This method of regression equa-
tion construction attracted great attention 
in the 1990’s (see [11] for more details).

Regression using PLS is an extension of 
the multiple linear regression model and 
can be represented as:

Y = b0 + b1X1 + 
+ b2X2 + ... + bpXp           (1)

In the equation 1, b0 is the regression co-
efficient for the interceptor, and values bi 
are regression coefficients (for variables 
from 1 to p) calculated from the data. The 
variables predicted will be from Y1 to Yi 
according to the study; in this article they 
were from 1 to 7.

Regression by PLS amplifies the multi-
ple linear regression without imposing 
restrictions by discriminant analysis, re-
gression by principal components, and 
canonical correlation. In PLS regression 
the prediction functions are represented 
by factors extracted from the matrix 
Y’XX’Y. The numbers of prediction func-
tions possible that can be extracted will 
typically exceed the maximum variables 
Y and X.

In summary, PLS regression is the less 
restrictive of the various multivariate ex-
tensions of multiple linear regressions. 
This flexibility allows PLS to be used in 
situations where the multivariate method 
is severely limited, as when fewer ob-
servations than the predictor’s variables 
exist (i.e., few answers and large input 

data). Furthermore, PLS regression can 
be used as an exploratory analysis to se-
lect adequate independent variables and 
identify outliers before the classical lin-
ear regression.

PLS regressions are used in various 
fields, such as chemistry, economics, 
medicine, psychology, and pharmacolo-
gy where predictive modelling, specially 
with large numbers of predictors, is nec-
essary. Especially in chemiometry has 
PLS regression been the standard tool 
for linear relationship modelling between 
multivariate measurements. [12]

n	The data base
Considering that a theoretical robust 
model is not available to be used for 
modelling and further optimisation, it 
was therefore necessary to build an em-
pirical model for control and optimisa-
tion purposes and to design an experi-
ment with all the raw material variables 
and all the manipulated process variables 
to be able to establish the causal relation-
ship that needs to be modelled. For this 
study a limited raw material type was 
used because the methodology can be 
used to any other desired; a DOE is an 

Table 3. Description of the dependent variables used in this study.

Variables (Matrix X) Predictor Lower Upper

POY, Dtex X1 128.00 567.00

Filaments X2 34.00 136.00

Draw force, cN X3 40.00 212.00

Elongation, % X4 101.00 138.00

Production speed, m/min X5 400.00 950.00

Draw Ratio X6 1.50 1.87

D/Y X7 1.52 2.15

Overfeed 2, % X8 0.00 8.90

Overfeed 3, % X9 0.00 8.90

Overfeed 4, % X10 0.00 8.90

Short heater temperature, ºC X11 200.00 550.00

Long heater temperature, ºC X12 200.00 550.00

Secondary heater temperature, ºC X13 0.00 240.00

Table 4. Description of the independent 
variables used in this study.

Variables (Matrix Y) Response
T1, g Y1
T2, g Y2

Actual surge speed, m/min Y3
Dtex/ply Y4

Elongation, % Y5
Tenacity, cN/tex Y6

Boiled water shrinkage, % Y7
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expensive option due to the high number 
of variables, cost and time constraints 
and the fact that the manipulated data 
were highly correlated. The correlations 
within X1 to X13 as well as the correla-
tions from Y1 to Y7 can be calculated us-
ing any statistical software.

The data were collected at the T5 plant 
of Unifi Inc during production, start-
ups, trials, and sample production when 
technicians manipulated the variables 
to attain certain properties or quality 
levels desired. This educated trial and 
error process coordinated by the tech-
nical group is in reality a false DOE at 
multiple combinations of the manipu-
lated variables, allowing causal model-
ling in restricted areas which are com-
mon or not concern the production. The 
partial least square method (latent vari-
ables) is excellent to built a model for 
these types of data. The resulting models 
do not provide independent information 
for all process variables but will provide 
causal effect models in a reduced sub-
space of the operational region sufficient 
to meet expectations or normal opera-
tional needs.

The dependent variables used are de-
scribed in Table 3. The data matrix used 
has 303 lines (observations), each line 
means a different product made with 
different process parameters. The raw 
material was semi-dull round polyester. 
The group formed from X1 to X4 is the 
raw material block, a number of other 
variables could be considered. The oth-
er manipulated variables, X5 to X13, are 
some of the most important information 
regarding process conditions. The region 
used in each variable is broad and can 
adequately represent a texturing plant to-
day. The resulting matrix X is 13 × 303; 
Table 3 also details its actual range.

The response matrix Y (independent 
variables) is given in Table 4, Y1 to Y3 
represent important process condition 
information, and Y4 to Y7 are physical 
properties of the product. The resulting 
matrix Y is 7 × 303. The dependent and 
independent variables form a complete 
matrix that will be used for partial least 
squares analysis.

The notation used for the modelling and 
analysis is represented in matrix form. 
Without losing generalisation, a process 
parameter can be referred to as a proc-
ess variable, and a mechanical property 

as a quality variable. If Xn denotes the 
process observations from 1 to 303, then 
Xnm, being m from 1 to 13, denotes the 
individual process variable, and if Yn de-
notes the nth quality variable observed, 
then Ynr, being r from 1 to 7, denotes the 
individual quality variable.

n	Modeling methodology
Figure 1 shows the information flow 
steps used to achieve modelling and op-
timisation using historical data. It is evi-
dent that all the analysis process occurred 
offline, which confirms the amount of la-

Figure 1. Information follow steps; adapted from [14].

Table 5. Compare results of a multivariate versus univariate regression approach.

Calculated 
PLS Actual

Multivariate Regression Univariate Regression
Correlation R-Sq Correlation R-Sq

YP1 Y1 0.95 89.8 0.94 87.5
YP2 Y2 0.93 85.5 0.90 81.2
YP3 Y3 0.83 67.7 0.70 48.6
YP4 Y4 0.99 97.3 0.99 99.6
YP5 Y5 0.87 74.7 0.77 59.7
YP6 Y6 0.80 64.6 0.44 19.0
YP7 Y7 0.86 73.3 0.72 51.7

 A

 A

 B

 B

 B

 C

 C

 C

 D

 D

 Refined data (X, Y)

Prodiction Model Matrix

Critical variables

Optomization Model

 Optimized Configuration X°

 Off-line

 On-line
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tent knowledge that exists in a good qual-
ity data base.

A factor analysis showed 5 principal 
components that contain the majority of 
information regarding the 13 predictor 
variables, which explains the potential of 
PLS to reduce dimensionality. Accord-
ing to [10], when a big amount of data 
is transformed into factors, the combi-
nations of variables are placed in order 
of variance explanation, from which the 
researcher can choose the number of fac-
tors to utilise; the “scree plot” can help to 
make this decision. Is this study 10 fac-
tors were used for the model acquisition.

To generate the PLS regression model, 
a Minitab 15 was used. All the Y’s pre-
dicted were significant with a high R-sq 
(over 0.65). Table 5 details the improve-
ment in correlation using the PLS ap-
proach, in which all the values calculated 
improved over the univariate approach. It 
also shows the R-sq determined using the 
PLS approach, with all the results show-
ing an improvement.

In the face of the remarkable results 
shown in Table 5, PLS must be recom-
mended to be used in the texturing proc-
ess for regression purposes. The results 
also indicate that modelling in the indus-
try can be utilised more frequently than 
it is today and verify that the statistical 
tools available have much to offer for 
continuous process improvement, a fact 
that it is in the minds of all people in in-
dustry today.

Since the model is complete and recog-
nised as being robust, optimisation can 
be applied.

	 Evolutionary or genetic 
algorithm

Evolutionary algorithms are procedures 
for optimising, learning, and modelling 
based on the principles of natural evo-
lution. These formal systems tend to be 
isomorphic with natural evolution. They 
were created for two purposes: to under-
stand natural evolution better and to help 
apply the principles of natural evolution 
to solve various tasks [13].

This technique utilises a solution popula-
tion instead of one unique point in gra-
dient methods of optimisation. Based on 

the law of natural selection, the solution 
that satisfies the objective function will 
“survive” the mutations and combina-
tions.

This is a global optimisation method 
that can have different areas of applica-
tion, such as lay-out projects, machine 
condition determination, constructions 
projects, system parameter estimation, 
and process parameter optimisation. [14]

The evolutionary algorithm finds solu-
tions through a chromosome group - in 
each generation a new population is gen-
erated through genetic operations such as 
birth, crossover, mutation and elitism.

A random population is first created us-
ing a specified probability. The breeding 
algorithm is also probabilistic, and there-
fore the accumulated sum of values of 
the fitness function of each chromosome 
is normalised to a sum of 1. The new 
population is then generated randomly, 
following the probabilities established 
according to the frequency accumulated. 
The procedure is similar to the Monte 
Carlo simulation. The optimisation algo-
rithm used was Excel added to “evolu-
tionary solver”.

n	Multivariate Optimisation
For the optimisation the genetic algo-
rithm was selected because it is evolu-
tionary, similar to human behaviour in 
the trial and error attempts to improve a 
process, for example.

The competitive environment that en-
terprises are today, where extensive re-
search and development of new products 
and processes is realised to improve the 
quality levels desired, can change little or 
considerably as result of R&D activities. 
The challenge is to implement changes 
and/ or improvements without great or 
unnecessary investment.

As in the texturing process, many varia-
bles exist, some of which are determined 
and or specified with respect to the raw 
material, whereas other qualitative vari-
ables are specified by the customer or is 
a process. Multiple answer optimisations 
were considered since it is the market 
reality. Some world class manufactur-
ers utilise a group of factors that allows 
them to be successful, therefore looking 

for an “optimal solution” in this context 
is meaningless (use of the gradient reso-
lution algorithm does not apply to this 
context).

Optimisation model
The goal function is represented in terms 
of the quality penalty predicted, from the 
distance between the value (ŷ) predicted 
to it is specified nominal value (T).

Min Z = (T - ŷ)2                (2)

As multiple variables were used due to 
the real manufacturing environment, a 
geometric average was applied to define 
the Z value. the desirability function was 
defined as follows:

Min Z1 = 
k
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where i and k are defined by the number 
of same time variables to be optimised or 
to get closer to the target.

Given the input matrix X3×9 and X1, X2, 
X3, X4,
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Xi the process parameter, mi the lower 
limit specified (LSL), and Mi the upper 
limit specified (USL). The data for Equa-
tion (4) are available upon request .

Thus, written in a different way:

mi (LSL) < Xi < Mi (USL), I being from 
5 to 13.

If Ti is the specified nominal value of Yi, 
the difference between them can be ex-
pressed in the modulus as Di = |Yi - Ti|. 
Studies have shown that Di < 1 can be 
achieved for the majority of cases.

Table 6. Geometric average of the differ-
ences between target and calculated value.

Z1 Z2 Z3
1103.4 4.0 0.0
6364.2 1923.4 0.0
      8.5 194.3 0.0
3961.4 2.0 0.0
2573.9 40.1 0.0
4787.4 50.4 0.0
5356.5 52.1 0.0
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In summary, two main streams were 
adopted for the constraints: the process 
variables where the experience, machine 
restrictions, raw material, and quality 
indicators will guide to define both the 
lower and upper specification limits, the 
other being where the customer or mar-
ket specifies or declares what is desirable 
as an acceptable range of results.

Given the model coefficient matrix:

α1×7, β13×7 = 



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
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 (5)

In equation 5 (written as a matrix) we 
have α, which is a constant and β, which 
is the coefficient for each factor.

The variables predicted can be defined 
as:

Y1 = α11 + β11X1 + β21X2 + ... + βi1Xi 

...                                (6)

Y7 = α17 + β17X1 + 

+ β27X2 + ... + βi7Xi 

Equation 6 is just a representation of the 
predicted value equation for Y1 until Y7, 
i being from 1 to 13 and j from 1 to 7.

The data of Equations (5) and (6) are 
available upon request.

n	 Case study
As a practical example of the application, 
the customer can specify the yarn charac-
teristics, which is common in industries 
where robust quality systems are in place. 
For example, a customer could ask for a 
183 Dtex with 34 filaments to be used 
in circular knitting, or a technical serv-
ice person could order a product from a 
plant with additional information: tenac-
ity over 42 cN/tex, elongation within 22 
and 24 and shrinkage around 14.From 
now on these data can be used as a tar-
get for the quality desired (Ti), the main 
goal being to find the possible machine 
parameters and raw material that will sat-
isfy the objective function of Min Z and 
its constraints. In most cases the raw ma-
terial will be used as a block due to avail-
ability at the warehouse, Its quality limits 
are normally supplied and checked by 
the QA. Running the evolutionary solver 
from excel, numerous possible results 
can be encountered. The need to explore 

or simulate how to process will react to a 
change is always present, those requests 
come from internal customers (depart-
ments within the company) and external 
customers (who actually consume/ buy 
the product). To illustrate the power of 
PLS modelling, Table 6 shows Z values 
of the following: Z1, being the existing 
model that uses the fundamentals of me-
chanics with no optimisation run through 
the GA, Z2, a model using PLS with no 
optimisation run through the GA and 
finally Z3, a model using PLS and opti-
mised with GA. Therefore, the function-
ality and efficacy of the modeling and 
optimisation is demonstrated.

n	Conclusions
When there is a complex system where 
variables interact and correlate with each 
other, PLS can be a quick and simple tool 
applied to generate models of historical 
data. The traditional regression approach 
requires non colinearity and/or experi-
mental work, which can be expensive in 
a complex process, difficult to undertake, 
and most of the time it does not allow 
practical usage. It also requires exploita-
tion time for analysis and the creation of 
a solid theoretical base. The PLS showed 
that data can be accumulated when proc-
ess control and traceability systems re-
quire, and when a considerable volume 
of data is available, multiple regression 
analysis with PLS can be performed to 
generate modeling, which can be up-
dated with new production data or proc-
ess adjustments, providing a continuous 
improvement process. The theoretical 
foundation will support the modelling, 
eliminating intermediate calculus, which 
could be controversial.

Optimisations showed to be feasible in a 
texturing environment, which gives the 
current market an opportunity to reduce 
or eliminate empirical trials, bringing ac-
tual value to the process without generat-
ing major costs.
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