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	 Introduction

The process of feeding of the knitting 
zone with warp threads on warp-knitting 
machines is determined by the follow-
ing three groups of parameters: The first 
group characterises the structure of the 
feeding device: m – point mass of the 
tension rail reduced to one thread, ks – 
coefficient of the rigidity of the tension 
rail, reduced to one thread, l1 – length 
of the thread from the tension rail to the 
guide bar, l2 – length of the thread from 
the beam to the tension rail, a – angle 
of the horizontal deviation of the thread 
“running-on” the tension rail, b – angle 
of the vertical deviation of the thread 
“running-of” the tension rail, ρ – angle 
of wrapping the tension rail with thread, 
the kind of surface of the tension rail 
plate determined by the coefficient of 
friction μ between the tension rail and 
the thread, np, vp – rotational and linear 
speed of feeding. The second group re-
fers to the mechanical properties of the 
threads, treated as a visco-elastic object 
and includes: d the coefficient of thread 
elasticity kp and the coefficient of thread 
attenuation bp. The third significant group 
of parameters are the components of the 
kinematic input function S’(t) which re-
sult from the specificity of the process 
of forming courses of loops on the warp 
knitted machine. The parameters model-
ling the changes in the absolute elonga-
tion of threads in the feeding zone are the 
following: Sp(t) – input function for the 
process of knitting the isotropic structures 
of the stitches, determined by the follow-
ing: the dislocation of loop-forming ele-
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ments in the warp-knitting machine, the 
process of reversible dislocations of the 
threads in the knitting zone, the type of 
stitch, conditions of the take-up of the 
fabric and the linear speed of the threads 
unwinding vp; DS(t) – input function de-
termined by the variation of the gradient 
of the knitting-in, characteristic of aniso-
tropic warp knitted fabrics only. 

A physical model of the constant-length 
feeding system presents the groups of 
parameters mentioned above (Figure 1, 
see page 82). The keynote and aim of 
this research is to present and analyse the 
dependencies describing the influence of 
the first group of geometry parameters of 
the feeding zone on the character and val-
ues of the dynamic loads of the threads. 

The practical aim of this research was to 
optimise the process of knitting on warp 
knitting machines by outlining the posi-
tive and advantageous areas of the input 
parameters, which will make the techno-
logical process a “correct” one with re-
gard to the minimum loads of the threads, 
without breaking them or, in the extreme 
situations, damaging the loop-forming el-
ements of the machine. The investigations 
were carried out with the use of computer 
simulation based on a mathematical mod-
el of the constant-length feeding process 
on warp knitting machines, which is also 
empirically verified [1-4].

	 Mathematical model of the 
feeding system

The equation of the motion of the ten-
sion rail referring to the mechanics of the 
vibration of the system, with one degree 
of freedom can take the following form  
Equation 1 (see page 82), where: 

h – relative coefficient of system attenuation,
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w0 – frequency of the free vibration of 
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ai – coefficient describing the geometry 
of the feeding system, 

 
12

sincos
lel

eai +⋅
⋅−

=
±

±

µρ

µρ αβ     (4), 

bzri – coefficient of system attenuation,

    ( ) ipzri abb ⋅−= αβ sincos   (5),

kzri – coefficient of system elasticity,

( ) piszri kakk ⋅−+= αβ sincos   (6)

The solution of equation (1) fulfilling 
zero initial conditions takes the follow-
ing form Equation 7 .

Forces in the threads are determined ac-
cording to the following dependence 
Equation 8 (see page 82).
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The solution of the mathematical model 
of the feeding process was based on the 
numerical and analytical method [1]. The 
input functions S(t)k, given in a discrete 
way, are developed into a trigonometric 
Fourier series. The solution, in the form 
of dislocations of the tension rail in an 
analytical way, is an integral of the con-
volution of the input function and the 
response to the impulse input function 
of the system, which was determined by 
numerical integration using the Gauss 
method. The results of the calculations 
are presented in the form of text files of 
model coefficients ai, bzri, kzri, hi, w0i and 
wi of the deflection value of the tension 
rail y(t), the values of forces in the threads 
P1(t)k, the derivatives of input function 
SS(t)k and the input function S(t)k.

The most important feature of the com-
puter program elaborated, which is used 
for simulation of the knitting process in 
the aspect of feeding, is that it supports 
the process of the technological design of 
warp-knitted fabrics.

	 Simulation tests of the knitting 
process with respect 	
to the diverse parameters 	
of the feeding zone

Characteristic of the feeding zone

The identification of the geometry of the 
feeding zone conducted for particular 
warp-knitting machines of the follow-
ing types: R5NF (E=12), RJSC (E=12), 
MRSEJ 43/1 (E=18) K2MPS (E20), K13 
(E12), RL5NF (E12), made by the K. 
Mayer company, and Kokett 5223 (E28), 
made by the Textima company, showed 
significant diversity in the parameters of 
the geometry of the feeding zone [5, 6].

The overall length of threads between the 
beam and guide bar was within the range 
of 916 to 3249 mm, the partial lengths: 
l1 = 591÷2525 mm & l2 = 220÷1025 mm; 
the number of elements (barriers) guid-

ing the threads was from 3 to 10, the 
summary angle of wrapping the barri-
ers γc = 96°÷619°, the angle of threads 
“running-on” the tension rail α = 1°÷62°, 
the angle of the threads “running-of” the 
tension rail β = 80°÷-15°.

For each particular type of machine there 
is a different way of feeding the threads. 
For example, on an RJSC warp-knitting 
machine the threads are fed using a 
constant-tension or constant-length con-
troller, which unwinds the warp threads, 
made on the basis of a mechanical or 
electronic control device. On an MRSEJ 
warp-knitting machine the threads are 
unwound from the beams, or in the case 
of the designing wefts, from the creel. 
On warp-knitting machines of the type 
MRSEJ and K13, used for producing lac-
es, the classic tension rail in the feeding 
zone is replaced with individual spring 
compensators through which the pattern 
threads are guided. 

Characteristic parameters of the structure 
of tension rail devices include the fol-
lowing: profile, surface finish, the mass 
of the tension rail plate, and the rigidity 
of the tension rail springs.

For the most commonly used steel tension 
rail plates with their surface polished, the 
coefficient of friction μ depends on the 
structure of the threads’ surface, which, 
unwound from the beams, run across the 
tension rail. Moreover the parameter of 
the linear mass of the tension rail plate is 
constant and equals mpl ≈ 85g/m. The in-

dividual mass 
Nu
m

m pl= , referring to one

thread and depending only on the needle 
gauge of the warp-knitting machine.

The rigidity coefficients of the spring ksp 
in the warp-knitting machine are selected 
depending on the elastic properties of the 
threads, their thickness, the configuration, 
and the number of springs in the particular 
length of the tension rail plate. In warp-

knitting machines the most commonly 
used are flat tension rail springs of a rigid-
ity within the range 12-168 cN/mm.

For the synthetic threads which are most 
commonly processed on warp-knitting 
machines, with an average needle gauge 
of ks = 0,5÷0,6 cN/mm.

In the process of technical (and eco-
nomic) design, machine construction 
designers concentrate on the following: 
the kinetics and dynamics of working 
machine assemblies, the type and proper-
ties of the materials used, optimisation of 
the constructional overall dimensions of 
machines, and the safety and ergonomics 
of machine operation [7].

In many cases, aspects concerning the 
technology of manufacturing knitted fab-
rics are ignored at the stage of assump-
tions and design concepts.

A significant element  in the modelling of 
the construction design of warp-knitting 
machines is the process of optimisation 
of the geometry of the feeding zone from 
the point of view of the minimum loads 
of the threads being fed.

Identification of the feeding system 
on warp-knitted machines in the 
aspect of an analysis of coefficients 
of the feeding zone geometry and the 
dynamic loads of the threads.
An analysis of the feeding process with 
regard to the optimisation of the loads of 
threads was conducted on the basis of the 
dependencies between the coefficients of 
the geometry of feeding ai and the input 
parameters of the system, as well as the 
influence of changes in particular param-
eters on the forces in the threads. In the 
description of the process of feeding in 
warp-knitting machines, coefficient ai is 
described by Equation (4), where coef-
ficients a1, a2 and a3 depend on the three 
conditions of t movement of the threads 
on the tension rail plate [1, 8].
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Equations 7 and 8.
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Coefficients ai are functions of the pa-
rameters of the feeding zone geometry, 
including the angles of the threads “run-
ning-on” and “running-of” the tension 
rail plate α and β, the lengths of threads 
“behind” and “in front” of the tension rail 
l1 and l2 , and the segment emr determin-
ing the friction force, which depends on 
the coefficient of friction m and the angle 
of wrapping r. These coefficients are also 
significant in the modelling of such pa-
rameters as the elasticity and attenuation 
of the feeding system, as well as indica-
tors such as the relative attenuation of the 

system and the free vibration frequency 
of the un-attenuated system, in relation 
to the character of the forces in the warp 
threads being fed.

In the general form of the differential 
equation (1) of the dynamics of tension 
rail movement, coefficients ai model the 
level of the input function, depending on

the values of S(t) and 
( )

dt
tdS

. Parameters

such as l1, l2, m & r presented in the form

of a fraction 
12

1
lel +⋅ ±µρ  and the values

of angles α and β determining the differ-
ence (cosβ – sinα) determine the values 
of forces in the threads Pi(t), calculated 
according to dependence (8). Coeffi-
cients ai = f(α, β, l1, l2, μ) take the form 
of a composite function describing the 
elements of both the trigonometric and 
power functions.

Influence of the l1 and l2 lengths  
of threads on the values of coefficients 
of  the feeding system geometry ai .
With constant values of α, β & μ, equa-
tion (4) ai = f(li) takes the following form:

Figure 3. Dependence of the coefficient of geometry a1 on the length 
of thread l1. Coefficient of the system geometry a1=f(l1) for l2=const. 

Figure 4. Dependence of the coefficient of geometry a1 on the 
length of thread l2.
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Figure 2. Dependence of the coefficient of geometry a1 on the l1 and 
l2 lengths of threads   (α = 30°, β = 22°, μ = 0,2).
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where:
αβ µρ sincos1 ⋅−= ±ek , µρ±= ek2 , 

αβ sincos3 −=k .

The dependence of ai on li or ∑li is a hy-
perbolic function.

With an increase in the argument of 
function l1, l2 or Lc = l1 + l2, the val-
ue of ai decreases. The character of 
changes a1 = f(l1 and l2) and dependence 
ai = f(Lc) are presented on the graphs 
in Figures 2, 3, 4 & 5. From a physi-
cal point of view of coefficients ai of 
the feeding system geometry, it can be 
stated that with a decrease in ai and an 
increase in length of the warp threads, 
a decrease in the values of forces in the 
threads can be expected.

Influence of the length of the threads 
on the character and values of forces  
in the them
The problem of changes in the loads of 
forces in the threads, depending on the 
length of their feeding zone, can be ex-
plained by basic research on the process 
of the dynamic stretching of the threads.
The character of the dependencies of 
the stretching force on the length of the 
thread can be determined on the basis of 
particular solutions of rheological equa-
tions of the state of the threads from the 
point of view of elastic and visco-elastic 
deformations [9-13].

The dependencies of the stretching force 
and the length of the thread for the mod-
els chosen can be presented in the follow-
ing form:
n	according to Hooke’s model:

1−⋅= lKP HH , 
	 where: HH ElK ⋅∆=     (11)
n	according to the Voigt – Kelvin model:

1−⋅= lKP VV , 
where: .rozVVV VlEK ⋅+∆⋅= η   (12)

n	according to Zener’s model:

1−⋅= lKP ZZ , where:












∆⋅+







 ⋅
−−⋅= lEtEVK Z

Z

Z
rozZZ 2

1
. exp1

η
η

  (13)

where: EH, EV, EZ1,2 – Young modulus 
of linear elasticity, ηV, ηZ – coefficients 
of viscosity, Δl – absolute elongation,  
Vroz. = const – stretching rate.

The dependencies P = f(l) presented are 
hyperbolic decreasing functions asymp-
totically approaching P = 0.

The dependencies resulting from the 
rheological models were confirmed by 
experimental research of the dynamic 
stretching of the threads [14, 15].

The characteristics of stretching P = f(E) 
for the following PET filament yarns: 
JPE84/f72 dtex, JV167/f40 dtex, and 
textured JPA 72/2/f17 dtex [15] were de-
termined on a measuring stand specially 
constructed for the dynamic stretching 
of the threads with rates Vroz within the 

range of 0-6 m/s and absolute elongation 
with the possibility of changing within 
the range of Δl = 0÷30mm.

The threads were stretched at the follow-
ing rates: V = 1.4, 2.5, 4.75 and 6.0 m/s, 
corresponding to the input function of 
the growth in force on the warp-knitting 
machines nd = 1200, 2000, 3600 & 4800 
rows/min, respectively, for the speeds of 
knitting. 

The investigations showed that with an 
increase in the length of the thread, the 
value of forces decreased by about 56% 
for viscose filament yarns, 71% for poly-
ester filament yarns and 86% for textured 
polyamide threads.

A mathematical analysis of the character-
istics of Pmax = f(l) showed that the most 
adequate regression functions describing 
the dependence between Pmax and l are the 
square and power functions (Figure 6).

For the length of thread being 
stretched, limited within the range of 
l = 400÷1300 mm, the power functions 
of dependence P = f(l) take a specific 
form of hyperbolic function P = a·l-1 for 
R2 = 0,95, which corresponds to the func-
tions of rheological models.
Simulation of the knitting process in the 
aspect of changes in P = f(L) were car-
ried out taking into account calculations 
of the real parameters of the process for 
a Kokett 5223 warp-knitting machine of 
needle gauge E28. The growth in thread 

Figure 5. Dependence of the coefficients of geometry ai on the total 
length of threads Lc = l1 + l2. 
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Dependence of an amplitude of forces on the length Lc2.

y = 3E-12x
4
 - 2E -08x

3
 + 7E -05x

2
 - 0,078x + 44,381

R
2
 = 0,9994

y = 3E -12x
4
 - 3E-08x

3
 + 7E -05x

2
 - 0,0809x + 44,157

R
2
 = 0,9992

2

3

4

5

6

7

8

9

10

11

12

1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100

length of the thread Lc2 ,mm

a
m

p
li
tu

d
e
 s

ił
 D

P
,c

N

     P  for l=1,85mm,Vo av .      P  for l=2,1mm,V o av .

    P  for l=2,3mm,Vo av . W ielom. (     P  for l=1,85mm,Vo av .)

W ielom. (    P  for l=2,3mm,Vo av .)

  D

  D

  D

Polyn.

Polyn.

(  D

   ( D P

   rys. 8

-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1
-1

-0,4

0,2

0,8

-0,0005

0

0,0005

0,001

0,0015

0,002

c
o

e
ff

ic
ie

n
t 

a
1
,m

m
-1

coefficient a1=f(a ,b)

-0,0005-0 0-0,0005 0,0005-0,001 0,001-0,0015 0,0015-0,002

angle b ,rad.angle a ,rad.

   rys. 9

being fed was changed within the range 
of 0÷288%.

The results showed a decrease in the 
values of the average forces of 56%, the 
minimum forces – 47%, and the maxi-
mum forces – 72% (Figure 7), and the 
amplitude of change in force DP was 
65% (Figure 8) within the limits of 
changes (l1 + l2) established. The charac-
teristics of the results of P = f(l) obtained 
were experimentally verified to obtain 
relative differences between the values 
calculated and those measured ε Pmax 
within the range of 9.8÷19.4%.

Influence of the values of the angles 
of threads „running-on” and 
„running-of” the tension rail  and the 
coefficients of friction on the values of 
the coefficients of feeding a1 and the 
forces in the threads
Influence of angles α and β on the 
values of coefficients of the geometry  
of feeding ai .
Dependence (4) describes coefficients a1 
and a2:

1
2

2

2

2,1
sincos

lel

ea
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=


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



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

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
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αβπµ

αβπµ
αβ ,  (14)

assuming that (l1, l2 & μ) = const takes the 
form of composite function a1,2 = f(α, β).
The characteristics of a1 and a2 are very 
similar, thus graphs a1 = f(α, β) are pre-
sented in Figures 9, 10 and 11. From the 
graph of a1 = f(α) for β = const., it results 
that a decrease in the value of coefficient 
a1 can be well described by a linear func-
tion, depending on angle α (Figure 10) 
(with the correlation coefficient of the 
boundary curves r2 ≥ 0.995).
The character of function a1 = f(β) for 
α = const is described by polynomial 
equations of the third degree (r230.9995) 
(Figure 11). It can be stated with high 
probability that function a1,2 = f(β) for 
α > 0 is a symmetric function in relation 
to the OY axis.
The formula for function a3 = f(α, β) can 
be written as follows:

( ) ka ⋅−= αβ sincos3 , 
  where const

ll
k =

+
=

12

1
    (15)

According to the formula above, function 
a3 = f(α) for β = const takes the following 
form: kka c ⋅−= )sin(3 α ,

which indicates that the value of a3 de-
creases with an increase in angle a on the 
basis of the character of changes in the 
sine function. 

Figure 8. Dependence of the amplitude of force ΔPmax on the length of thread being 
fed.
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For a3 = f(β) for α = 0 we obtain 
( ) kka s ⋅−= βcos3 , described by the co-

sine function.

The character of the curves of functions 
a1,2,3 = f(a) analysed is very similar, de-
termining the same tendency of changes 
in function ai of angles a. The analogous 
similarity of the curves can be seen for 
the dependencies of a1,2,3=f(b).

Dependence of coefficients ai on the 
friction coefficient m of the thread 
against the tension rail plate

The dependence of ai=f(m) concerns co-
efficients a1 and a2, which correspond to 
the conditions of the dislocation of the 
threads on the tension rail.

Dependence (4) can be written in the fol-
lowing form:
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Dependence of force Pmax on the length of the warp thread (l1+l2).
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Dependence of an amplitude of forces on the length Lc2.
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Figure 9. Dependence of coefficient a1 on the angles α of the 
thread „running-on” and β „running-of” the tension rail plate 
(l1 = 400 mm, l2 = 610 mm, μ = 0,2).
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Figure 10. Dependence of coefficient a1 on angle α of the thread 
„running-on” the tension rail plate.
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Figure 11. Dependence of coefficient a1 on angle β of the thread 
„running-of” the tension rail plate.
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Figure 12. Dependence of coefficient ai on the friction coefficient m 
of the thread against the tension rail plate (l1 = 400 mm, l2 = 610 mm, 
α = 36°, β = 22°). 

coefficient ai=f(mi) 

y = 0.0011x + 0.0003
R2 = 1

y = -0.0009x + 0.0003
R2 = 1

80
70

60
50

40
30

20
10

0
-10

-20
0

20

40

10

12

14

16

18

20

22

24

fo
rc

e
 P

m
a

x
 ,

 c
N

Dependence of force P max on angles a  and b

10-12 12-14 14-16 16-18 18-20 20-22 22-24

angle b  , deg

angle a , deg

   rys. 13 (7,5 cm)

15

20

25

30

35

40

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

coefficient of friction m

fo
rc

e
 P

m
a

x
 ,

 c
N

fi=120 deg fi=70 deg fi=20 deg

Dependence of force Pmax on the friction coefficient  m

   rys. 14 (7,5 cm)

Figure 13. Dependence of force Pmax on angles α and β.

angle α, deg 
angle β, deg 

Dependence of force Pmax on anglesα and β

Figure 14. Dependence of force Pmax on the friction coefficient of a 
thread against the tension rail plate (ρ = 20° for α = 40° and β = -30°, 
ρ = 70° for α = 40° and β = 20°, ρ = 120° for α = 40° and β = 70°).

80
70

60
50

40
30

20
10

0
-10

-20
0

20

40

10

12

14

16

18

20

22

24
fo

rc
e

 P
m

a
x

 ,
 c

N

Dependence of force P max on angles a  and b

10-12 12-14 14-16 16-18 18-20 20-22 22-24

angle b  , deg

angle a , deg

   rys. 13 (7,5 cm)

15

20

25

30

35

40

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

coefficient of friction m

fo
rc

e
 P

m
a

x
 ,

 c
N

fi=120 deg fi=70 deg fi=20 deg

Dependence of force Pmax on the friction coefficient  m

   rys. 14 (7,5 cm)

Dependence of force Pmax on the friction coefficient μ

coefficient of friction μ



87FIBRES & TEXTILES in Eastern Europe 2010, Vol. 19, No. 4 (87)

5
2

4

3
2

1
2,1

kek

kek
a k

k

+⋅

⋅−
=

±

±

µ

µ

     (16)

with constant coefficients: k1 = cosβ, 
k2 = r, k3 = sinα, k4 = l2 & k5 = l1 = const. 

Fraction a1,2 is a quotient of exponential 
functions. The character of a1,2 for a range 
of m from 0.005 to 0.5 is presented in 
Figure 12.

With an increase in the argument, the 
values of function a1,2 = f(m) increase for 
coefficient a2 and decrease for coefficient 
a1. Within the range of m assumed for 
r230,999 with high probability, depend-
ence (16) can be described by a linear 
function. Straight lines approximating 
functions a1,2 = f(m) are symmetrical to

the straight line 
54

31
3 kk

kka
+
−

= .

Results of simulations of the 
dependencies of the force on angles  
a and b and the friction coefficient m  
of the thread against the tension rail
For calculations of the forces of the func-
tion of angles a of thread „running-on” 
and b “running-of” the tension rail plate 
(Figure 13), which depend on the angle 
of wrapping r, the following input data 
was selected: E 20, nd = 700 rows/min, 
l1 = 400 mm, l2 = 610 mm, ks = 0,6 cN·mm-1, 
locz. = 4 mm, kp = 3150 cN, bp= 1050 cN·ms 
(for thread JPE 110/24 f dtex), and y0=4 mm.

The results of the investigations are pre-
sented in Figure 13, which show the fol-
lowing:
n	Within the range of angles α = -30÷10° 

with an initial constant value of the 
force of around 17 cN, Pmax decreases 
by 24% and next within the range of 
0°(10°) – 40° the force rapidly in-
creases, reaching 21.5 cN (of 65%) 
and then it stabilises. 

n	Function Pmax = f(b) has a parabolic 
character (Pmax = aβ2 + bβ + c). The 
minimum of the function occurs for 
angle b approaching zero and equals 
Pmax = 13.2 ÷ 21.8 cN.

The dependencies mentioned above can 
help to optimise the parameters of the 
feeding process from the point of view of 
the lowest values of force Pmax. 

This way, for α = 30 ÷ 10° and β = -20÷10° 
the extreme forces Pmax take the mini-
mum values. 

The dependence of the force in the threads 
on the friction coefficient of a thread 
against the tension rail plate is presented 
in Figure 14. Function Pmax = f(m) has an 
increasing character, while the value of 
the angle of wrapping r determines the 
intensity degree of changes in Pmax on 
m. For the linear function of regression  
(y = ax + b) of Pmax = f(m) changes, the 
slopes of the function equal a = 54.9 cN 
for r = 20°, a = 16.8 cN for r = 70° and 
a  = 4.4 cN for r = 120°.

	 Summary
1.	 Simulations of the process of knitting 

on warp-knitting machines were con-
ducted in order to determine optimal 
input parameters with regard to the 
minimum load of threads.

	 Analysis of the knitting process was 
conducted in the aspect of the deter-
mination of advantageous areas of 
an important group of parameters 
characterising the geometry of the 
structure of the feeding device, in-
cluding as follows: the length of 
warp threads “behind” and “in front 
of” the tension rail l1 and l2, angles 
α and β of the thread “running-on” 
and “running-of” the tension rail 
plate, friction coefficient m of a 
thread against the tension rail, the 
mass of the tension rail plate m, 
and the rigidity of springs support-
ing the tension rail ks. Simulations 
were carried out in both directions, 
primarily to identify the character 
of changes in the coefficient of the 
feeding system geometry a1. In the 
mathematical function of the model 
of the feeding process, the coeffi-
cient describes the parameters of the 
structure of the feeding device men-
tioned above. The second direction 
of the analysis, and at the same time 
the main goal of this research, was 
to find optimum solutions with re-
gard to limiting the values of forces 
in the threads, beyond which disad-
vantageous disturbances in the knit-
ting process can occur, further lead-
ing to unfavourable changes in the 
fabric structure. An algorithm of the 
mathematical model of the knitting 
process was elaborated in order to 
be used as a tool for simulations of 
the behaviour of the feeding system 
on warp-knitting machines.

	From the simulations of the knitting 
process conducted in order to analyse 

the structural features of warp-knit-
ting machines and to identify opti-
mum parameters of the feeding proc-
ess with regard to the dynamic load of 
the threads, it results that:
–	 The coefficient of the geometry of 

the feeding system describing, in 
a synthetic way, the parameters of 
the geometry of the structure of 
the feeding device shows a ten-
dency to decrease with an increase 
in the length of the threads being 
fed, which in a physical meaning 
is characterised by a decrease in 
the values of forces in the threads. 
Coefficient ai is characterised by a 
decreasing function that depends 
on the angle a of threads “running-
on” the tension rail and is a function 
of the argument of angle β of the 
thread “running-of” the tension rail, 
being of a tendency described by a 
polynomial equation of the third de-
gree.

–	 With an increase in the free length 
of the threads within a range of 
0 – 280%, the forces in the threads 
decrease by 74%, while the ampli-
tude of force ΔP decreases by 65%. 
An optimal range of changes ΔL 
significantly decreasing the values 
of the maximum forces and ampli-
tude of forces are the increments 
in length, starting from a value of 
100%. The data presented and char-
acter of changes in P = f (L) were 
experimentally verified. The results 
obtained confirm the experimen-
tal investigations of the dynamic 
stretching of the threads, where 
the dependence of P = f (L) is a 
decreasing hyperbolic function as-
ymptotically approaching P = 0.

–	 The character of changes in the 
force, depending on angles α of 
the threads “running-on” and β 
“running-of” the tension rail, can 
be described by hyperbolic tan-
gent and cosine functions, where 
optimum values of the angles from 
the point of view of the lowest 
values of Pmax equal α = -30°÷10°, 
β = -20°÷10° and the angle of wrap-
ping ρ = 60°÷110°.

–	 The extreme forces in the threads 
increase in a ’linear’ way depending 
on the coefficient of friction of the 
thread against the tension rail plate, 
and the intensity of the increase de-
pends on the angle of wrapping r.
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2.	 A computer simulation of the knitting 
process in the aspect of the dynamics 
of feeding is of great importance for 
the process of designing technological 
parameters, as well as for the mechani-
cal designer-engineer in the process of 
designing warp-knitting machines from 
the point of view of the optimisation of 
modulus constructional solutions for the 
machine and also optimisation of the 
geometry of the feeding zone, and the 
technical parameters of the machine. 
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XVII Seminar and Workshop on 	
‘New Aspects of the Chemistry 	
and Applications of Chitin 	

and its Derivatives’

INVITATION

On behalf of the Board of the Polish Chitin Society I have both a pleasure and an honour to invite you to participate in the  
XVII Seminar and Workshop on “New Aspects of the Chemistry and Applications of Chitin and its Derivatives” 
which will be held in Warsaw, Poland,  September 21st – 23rd, 2011. 

The aim of the conference is to present the results of recent research, development and applications of chitin and 
chitosan.
It is also our intention to give the conference participants working  in different fields an opportunity to meet and 
exchange their experiences in a relaxing environment.

           Best regards
Dr Malgorzata M. Jaworska

    For more information please contact: 

CONFERENCE SECRETARY
M. Sklodowskiej-Curie 19/27, 90-570 Łódź, Poland
tel. (+48) 42 638 03 339, fax (+ 48) 42 637 62 14,
e-mail: ptchit@ibwch.lodz.pl   www.ptchit.lodz.pl
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