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The effect of spinning speed  
on the twist of self-twist yarn
The production efficiency of the self-
twist spinning system can be affected by 
the spinning speed. It is beyond doubt 
that the spinning speed has an influence 
on the twists of self-twist yarn. The high-
er the spinning speed is, the shorter the 
time of two strands used to be self-twist-
ed; and thus fewer twists can be added to 
the self-twist yarn (Figure 4.a).

The effect of the pressure of the self-
twist rollers on the twist of self-twist 
yarn
Self-twist rollers are pressurised by 
weight, each being 100 g. Four groups 
– 300, 40, 500 and 600 g were tested. 
The results showed that the greater the 
pressure of the self-twist roller, the more 
twists of self-twist yarn obtained (Fig-
ure 4.b).

The effect of the spinning tension on 
the twist of self-twist yarn
From the nip of the front rollers to that of 
the self-twist rollers and from the nip of 
the self-twist rollers to that of the take-
up rollers, the self-twist yarn should keep 
a certain tension to ensure a smooth spin-
ning process. Tension size will directly 
affect the process of self-twist and twists.
Smaller spinning tension E1 from the nip 
of the front rollers to that of the self-twist 
rollers can gain more twists of self-twist 
yarn over the half cycle length, as seen 
from Table 1. When the same spinning 
tension E1 is adopted, smaller spinning 
tension E2 from the nip of the self-twist 

Table 1. Twists at different spinning tensions 
E1 and E2.

E1 E2 S Z
1.025 0.92 11.3 10.8
1.025 0.95 11.1 9.6
1.025 0.99 10.7 10.5
1.06 0.92 10.3 10.8
1.06 0.95 9.1 9.2
1.06 0.99 9 8.9

1.096 0.92 8.5 8.4
1.096 0.95 8.1 7.9
1.096 0.99 7.4 6.6

rollers to that of the take-up rollers can 
achieve more twists of self-twist yarn 
over the half cycle length. That is to say, 
the smaller the spinning tension E1 and 
E2, the more twists obtained. But when 
the spinning tension E1 and E2 is too 
small to maintain spinning in the guide, 
the spinning tension E1 should be con-
trolled in the range of (1.025-1.06), and 
E2 should be more than 0.92. It is found 
that the spinning process cannot be car-
ried out smoothly when the spinning ten-
sion E2 is less than 0.92.

 Conclusions
By calculating the twist formula of in-
phase self-twist yarn over the half cycle 
length, six structural factors can be ob-
tained i.e. the oscillating stroke D, cycle 
length X, the distance L1 from the nip 
of the front rollers to the nip of the self-
twist rollers, the perimeter of strand P, the 
feeding distance of the two strands e, and 
the distance L2 from the nip of the self-
twist rollers to the convergence guide O. 
Among these six parameters, when a par-
ticular yarn is spun, the effect of the os-
cillating stroke D and cycle length X on 
the self-twist is opposite, where the larg-
er the oscillating stroke D, the greater the 
twist of self-twist yarn, and the greater 
the cycle length X, the smaller the twist 
of self-twist yarn. Therefore the oscillat-
ing stroke D and cycle length X should 
have a reasonable configuration in order 
to get the higher twist of self-twist yarn. 
At the same time, the greater the distance 
from the nip of the front rollers to the nip 
of the self-twist rollers, the more the twist 

of self-twist yarn in the case of the lim-
ited space when selecting these parame-
ters. The twist over the half cycle length 
decreases with an increase in the circum-
ference of strand P along with a decrease 
in the feeding distance e and increase in 
the distance L2 from the nip of the self-
twist rollers to the convergence guide. In 
summary, the smaller these three factors, 
the better the degree of twisting.

The twists are influenced by processing 
parameters such as the spinning speed, 
the pressure of the self-twist rollers, and 
spinning tension E1 and E2,respectively, 
from the nip of the front rollers to the self-
twist rollers and from the nip of the self-
twist rollers to the convergence guide. In 
the case of the same specimen, the high-
er the spinning speed is, the more twists 
there are. At the same time, the higher 
the pressure of the self-twist rollers, the 
more twists of self-twist yarn obtained. 
In the same way, the smaller the spinning 
tension E1 and E2, the more twist counts 

Figure 4. Twists over the half cycle length with the spinning speed and the pressure of the self-twist rollers: a) twists over half cycle length 
and spinning speed, b) twists over half cycle length and pressure of self-twist rollers.
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(a)Twists over half cycle length and spinning speed 
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(b)Twists over half cycle length and pressure of  

self-twist rollers 

Figure 4(a)-(b) Twists over the half cycle length with the spinning speed and the pressure of the self-twist rollers 
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achieved. However, the value of spinning 
tension E1 and E2 cannot be lower than 
1.025 and 0.92, and otherwise a normal 
spinning process cannot be obtained.
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