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Abstract
There is a growing need to replace  visual fabric inspection with automated systems that 
detect and classify fabric defects. The digital processing of  fabric images utilises different 
methods that offer a large set of image features. The correlation between those features 
lead to problems during  fabric fault classification and reduces the performance of the 
classifiers. This work extracted a combination of statistical (spatial) and Fourier transform 
(spectral) features from  fabric images of the most frequent faults. Principal component 
analysis (PCA) was implemented to reduce the dimensionality of the input feature dataset, 
which achieved a reduction to 36% of the original data size while preserving 99% of  in-
formation in the original dataset. The features processed using the PCA were fed to an ar-
tificial neural network (ANN) to classify the fault categories and then compared to another 
ANN that worked with the whole feature dataset. The performance of the network that was 
implemented after  application of the PCA increased to 90% of the correct classification 
rate as compared to 73.3% for the other network. 

Key words: fabric fault detector, image processing,  artificial neural networks ,principal com-
ponent analysis.

n Fabric faults
There is a large amount of fabric defects 
that may be caused by different sources 
and production technologies. Spinning 
faults, for example, should be mended 
before fabric production (either by weav-
ing or knitting) otherwise it will lead to 
fabric faults that may not be fixed at all. 
Therefore the scope of this study was 
only faults that occur during the weaving 
process and focusing on plain woven fab-
rics only. The fabric faults studied might 
be considered as severe faults and had to 
be fixed or removed. A defect-free sam-
ple is shown in Figure 2.a and the defect-
ed samples can be categorised into three 
main categories: defects in the warp and 
weft directions, and areal defects. There 
are different names that can be found in 
literature for the same defect; however 
the ASTM definition and description for 
these faults [19] will be considered in this 
work. 

Warp direction
Wrong draw: This fault results when one 
or more warp ends are incorrectly drawn 
in the harness or reed. The fault is shown 
in Figure 2.b and can also be called 

traction and fault classification can be 
found as shown in Figure 1. The meth-
ods of feature extraction vary, including 
spatial (statistical) features [3], spectral 
features (fast Fourier Transform) [4], a 
combination of spatial and spectral fea-
tures [5 - 10], as well as other methods 
that may utilise wavelet transformers [11, 
12]. The features extracted are fed to a 
classification system that has been imple-
mented by researchers in different ways. 
Among these classifiers are artificial neu-
ral networks (ANN) of different types 
[13, 14], fuzzy inference systems [15], 
neuro-fuzzy systems [16, 17], as well as 
other classification systems [18].

In this work, some highly frequently oc-
curring defects that represent the main 
categories of faults (warp, weft, and ar-
eal directions) were studied. A system 
of image acquisition and enhancement 
was developed and a number of spatial 
and spectral features extracted. The clas-
sification was done using pattern recog-
nition artificial neural networks (ANNs) 
that were fed with the whole features and 
with the reduced dataset after applica-
tion of the principal component analysis 
(PCA) technique. The performance of the 
two ANN classifiers was evaluated. 

n	Introduction
Early intervention to fix, or remove, fab-
ric faults is one of the mandatory tasks 
required by all fabric manufacturers. Un-
detected defects cause many problems 
downstream in the production line and 
result in end products with lower quality, 
creating a cost burden and non-profitable 
products. Automatic fault detection sys-
tems offer good alternatives to replace 
traditional human fabric inspection with 
computer vision systems that analyse 
fabrics in a systematic manner and aim 
at consistent performance. The efficiency 
of these automated systems, however, 
depends on many parameters and varies 
according to the quality of the hardware 
and the analysis algorithm. 

There are many research articles in the 
field of automatic fabric fault detection 
and classification that can be found in 
published reviews [1, 2]. Among those 
some common methods for feature ex-
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Figure 1. Different methods available in the literature for feature extraction and classifica-
tion.
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“wrong draft”, “misdraw”, or “double 
end”. This fault may be considered as a 
severe defect because it appears through-
out the whole length of the fabric if not 
fixed. 

Slub: This fault shows in the fabric as 
an abruptly thickened place in a yarn. It 
can occur in the warp or weft direction, 
but it was considered only in the warp di-
rection in this study. Other names of the 
same fault are lump, piecing, slough-off, 
and slug. All these names are considered 
in ASTM standards. This fault may occur 
due to malfunctioning in warp sensors, 
shown in Figure 2.c.

Weft direction
Stop mark: This appears as a visible 
change in the density of the weave across 
the width of the fabric caused by the ten-
sion on the warp not being adjusted prop-
erly after the loom has been stopped. This 
fault may be called a “set mark”, or “light 
beat-up”, shown in Figure 2.d.

Area faults
Hole: It is an imperfection in the fabric 
where one or more yarns are sufficiently 
damaged to create an aperture. In case 
of a relatively large hole, it might be 
called a “smash”, which is characterised 
by broken warp ends and floating picks. 
The smash may be equivalently called a 
“break-out”, shown in Figure 2.e.

Stain: It is an area of discoloration that 
penetrates the fabric surface. If this dis-
coloration is caused by grease or oil and 
the off-colored area appears in any shape, 
it is called a “blotch” or “oil spot”, an ex-
ample of which is shown in Figure 2.f. 

n	Methodology
Samples
Fabric samples were manufactured on a 
Sulzer-Ruti weaving machine. The fab-
ric structure was plain weave 1/1 with a 
yarn count of 29.5 tex for the warp and 
42 tex for the weft. The densities of warp 
and weft yarns are 20 and 18 per cm, 
respectively. The defects chosen were 
intentionally introduced on the weaving 
machine based on knowledge of the de-
fects’ sources.

Image acquisition 
The image acquisition setup is shown 
in Figure 3, utilising a Canon digital 
camera (model: EOS 450D) with CMOS 
sensor. The system is installed with “Re-
mote Live View Shooting”, where on-
line monitoring of the pictures and their 
adjustment can be done on a computer 
using EOS Utility software. The camera 
uses 35 mm EF-S lenses and captures 
images at a resolution of 72 dots per inch 
(dpi). The fabric sample is placed on an 
inspection table that is equipped with 
concentrated LED lights in a box placed 

Figure 2. Images of: a) defect-free, b) wrong draw, c) warp slub, d) stop mark, e) holes, f) fabric blotch woven fabrics. 

c)b)a)

f)e)d)

Figure 3. Fabric image acquisition setup.
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The second, third and fourth order mo-
ments can be calculated as features f15, 
f17, and f19 (a = 15, 17 and 19) for the 
rows as well as features f16, f18, and f20 
(i.e. a = 16, 18 and 20) for the columns.
 
Spectral features
A fabric image of size M × N can be trans-
formed from its spatial domain P(x,y) to 
the spectral domain (u,v) using the dis-
crete Fourier transform (DFT), which can 
be expressed in a mathematical form as: 

 
(9)

Where x and y are the image spatial vari-
ables that correspond to the coordinates 
inside the image, while u and v represent 
the frequency variables transformed. 
Once the image is transformed, its power 
spectrum can be calculated as: 

PW(u,v) = | (u,v)|2 = R2(u,v)    (10)

Where | (u,v)| is known as the Fourier 
spectrum, and R2(u,v) and I2(u,v) are the 
real and imaginary parts of the image 
transformed (u,v). Shifting the power 
spectrum is done by implementing the 
exponential properties of the transformer:

𝔉[P(x,y)(-1)x+y] = (u-M/2, v-N/2) (11)

Where 𝔉 [.] is the Fourier transform 
of an argument, stating the origin of 
the Fourier transform. (0,0) of image  
P(x,y)(-1)x+y is located at u = M/2 and  
v = N/2, which causes the shifting of the 
spectrum to these coordinates. The first 
spectral feature selected is taken as the 
DC peak, which represents zero frequen-
cy in the image (thus originated the name 
DC, referring to direct current with zero 
frequency in electrical circuits). This 
peak dominates because it represents the 
average grey level of the image, as can be 
seen from the equation:

    (12)

 The peaks at frequencies other than zero 
are important in summarising informa-
tion of the image and revealing its fea-
tures. To visualise the other peaks and for 
illustration purposes, the DC peak is sup-
pressed to zero, as illustrated in Figure 4. 
The peaks in the two basic orthogonal 
directions can be extracted as shown in 
Figures 5 and 6, which represent the 0° 
and 90° directions, respectively. For each 
direction the first four peaks were consid-
ered as features and for each peak both 
the magnitude (amplitude) and frequency 

            (3)

The next two features, f2 and f3, represent 
the mean of the sum of rows (f2) and that 
of the sum of columns (f3). The relation 
for the first feature in the weft direction 
is:

        (4)

Similarly for the feature in the warp di-
rection: 

        (5)

For space constraints, the equations will 
be listed for the features in the weft (rows) 
direction only and similar relations can 
be written for the warp (columns) direc-
tion by replacing R(mj) with C(ni).

The standard deviation of the sum of 
rows (f4) and for the sum of columns (f5) 
can be calculated as:

  (6)

R = f2
Features f6 and f7 represent the median 
value of the sum of rows and columns:

f6 = mediana (R(mj))

Features f8 and f10 represent the mini-
mum and maximum values, respectively, 
for the sum of rows and f9 and f11 rep-
resent the same values for the columns. 
These features can be written as:

f8 = min(R(mj)), f10 = max(R(mj))

The range of the sum of rows and col-
umns was chosen to be, respectively, fea-
tures f12 and f13: 

f12 = range(R(mj))

The entropy of the image represents fea-
ture f14: 

(7)

The kth order moment for the sum of 
rows can be calculated from the function 

      (8)

directly under the shooting area. To re-
move the noise and interference of the 
surrounding lights, a suitable shield was 
installed between the camera and shoot-
ing area. 

Image enhancement
The system developed applies initial 
enhancements to the original images 
to reduce noise (e.g. hairiness) and im-
prove their contrast. The system uses 
the contrast-limited adaptive histogram 
equalisation (CLAHE) [20] algorithm 
to enhance the contrast of the grayscale 
image by transforming the values. The 
algorithm can be described briefly as it 
operates in small regions (windows) in 
the image. Each window’s contrast is 
enhanced so that the histogram of the 
output region approximately matches 
the histogram specified. The neighboring 
windows are then combined using bilin-
ear interpolation to eliminate artificially 
induced boundaries. The contrast, espe-
cially in homogeneous areas, can be lim-
ited to avoid amplifying any noise that 
might be present in the image.

Image analysis and feature extraction
If the fabric image can be defined in 
the spatial domain by the matrix P(x,y), 
where: x is the row number in the image 
(1 ≤ x ≤ N), y the column number (1 ≤ y 
≤ M), and N & M are the number of rows 
and columns, respectively, the features 
that can be extracted from this image are 
summarised as below.

Statistical features
A total set of twenty spatial (statistical) 
features can be extracted from the fabric 
images. To obtain these features, the sum 
of individual gray-scale level values in 
the weft direction (rows) is calculated in 
the vector R(mj), where: 

                (1)

Similarly the sum of individual gray-
scale values in the warp direction (col-
umns) is calculated as:

               (2)

The first feature selected is the sum of all 
the gray-scale values in the image, which 
can be calculated as:
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were extracted as individual features. 
Therefore features f22, f23, f24, and f25 
were extracted from the zero direction as 
the amplitudes of the peaks, and features 
f26, f27, f28, and f29 were extracted as the 
frequencies (locations) of the peaks. Sim-
ilarly features f30 up to f37 were extracted 
from the 90˚ direction as the amplitudes 
and frequencies of the peaks in this direc-
tion.

Principal component analysis (PCA)
Although many features can be extracted 
from the images as shown before, some 
of them are highly correlated and some 
may not affect the model’s predictability 
as others. Analysis to establish the most 
influential parameters can be performed 
using principal component analysis 
(PCA), which is a method for the linear 
transformation of a set of n dimensional 
data by projecting on an orthonormal set 
of r axes, where r ≤ n. The new r axes are 
uncorrelated and called principal com-
ponents because they are rotated in such 
a way that the axes are oriented along 
the direction of the highest variability 
of data. This, in turn, implies the high-
est amount of information represented by 
this data. In situations where 1 ≤ r << n,  
a great reduction in dimensionality can 

be achieved with the preservation of a 
high percentage of information in the 
original data. This high preservation is 
achieved because the first few principal 
components are usually chosen to repre-
sent the highest variability in the system. 
The dimensional reduction of the corre-
lated data to uncorrelated components is 
very useful as it increases the robustness 
of predictive models such as artificial 
neural networks. 

Dataset A with n number of factors and 
m repeats or points for that factor can be 
represented in the form:

The PCA procedure starts with normalis-
ing the input dataset A to another set B 
that is translated to have a mean of zero 
and scaled to have a standard deviation 
of 1 for all the ith factors. This normalisa-
tion is important to neutralise the predic-
tive models from any bias towards any 
of the input factors. The normalisation 
can be achieved by constructing B = bi,j 
where:

                  (13)

                 (14)

            (15)

In these relations,  is the mean of events 
for the ith factor, and  is its standard de-
viation. After the data normalization, the 
correlation matrix C can be calculated 
from the normalized data B according to 
the relation [21]: 

 (16)

The principle components are oriented 
toward the eigenvectors of the correla-
tion matrix and have a variance equal to 
the associated eigenvalues. This can be 
represented mathematically in the form:

C Ψ = L Ψ

Figure 4. Fourier spectrum of the fabric image after sup-
pressing the DC peak.

Figure 5. Peaks in the 0˚ direction plan (a) in Figure 4).

Figure 6. Peaks in the 90˚ direction (plan (b) in Figure 4).

Figure 4. 

Figure 5. 

Figure 6. 

Figure 4. 
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Where L and Ψ represent the eigenval-
ues and eigenvectors, respectively. The 
first principal component PC1 is usually 
chosen to have the highest variance al-
located with the highest eigenvalue λ1 
and directed towards ψ1. The second 
principal component PC2 is orthonormal 
to PC1 and is chosen to have the next 
highest variance associated with λ2. In 
general, all principal components PCk  
(k = 1, 2…, r ≤ n) can be calculated in 
the same way. Each principal component 
contributes to the total variance by a per-
centage (vk) that can be calculated from 
the relation:

           (17)

 Since the first principal components are 
associated with the highest λ values, the 
dimensionality of the original data can 
be reduced to a limited number of com-
ponents without losing the information 
(variability) embedded in the original 
data. Therefore the PCA results in re-
moving the redundancy in the original 
data (caused by the collinear variables) 
and reveals the effective dimensionality 
of the dataset [22]. 

n Results and discussion
The set of combined spatial and spectral 
features was calculated for all fabric im-
ages. The features extracted were found 
to have different behaviours as some 
were found to cluster and converge for 
a certain fabric category while diverge 

for other categories. To illustrate the fea-
tures’ behaviour, feature f1 is used as an 
example, shown in Figure 7, where the 
feature values are represented on the y-
axis and fabric fault category numbers 
on the x-axis. Category No. 1 represents 
“defect free” fabrics, category No. 2 
“wrong draw” fabrics, category No. 3 
fabrics with “slubs”, category No. 4 fab-
rics with “stop marks”, category No. 5 
fabrics with “holes”, and category No. 6 
represents “stained” fabrics.

It can be seen from the figure that f1 is 
concentrated with low dispersion for 
certain groups such as the defect free 
(category No. 1), where 65 readings are 
plotted on the graph with relatively low 
variance. On the other hand, the same 
feature is scattered in representing other 
categories such as the case of stained 
fabric (category No. 6), where 20 values 
are plotted and have a high dispersion. 
It can be detected from the behaviour of 

the features that from some of them we 
are able to distinguish a category or more 
from the other categories. The combina-
tion of features allows the detection of 
fault classes in situations where no sin-
gle feature can be used to distinguish the 
sample. The behaviour of features also 
indicates the differences and similarities 
between the groups. For example, it can 
be seen that categories No. 1 and No. 4  
are very close in their feature values, 
which may lead to difficulty in differen-
tiating these categories during the classi-
fication step. 

The original dataset of features has high 
correlations between the features and de-
creasing the dimensionality of the data 
will be useful during the classification. 
Applying PCA to the feature dataset re-
sults in 36 principal components, which 
is the same number of the inputs. Howev-
er, not all of these principal components 
are useful according to the information 

Table 1. Variance of principal components and their percentages.

Component Eigenvalue Percentage, % Cumulative, %
PC1 9.57 30.56 30.56
PC2 5.40 17.22 47.78
PC3 4.10 13.08 60.85
PC4 3.22 10.29 71.14
PC5 2.70 8.61 79.75
PC6 1.69 5.39 85.14
PC7 1.22 3.88 89.02
PC8 0.79 2.51 91.53
PC9 0.69 2.21 93.74

PC10 0.52 1.67 95.41
PC11 0.41 1.32 96.73
PC12 0.40 1.26 98.00
PC13 0.33 1.06 99.06

Figure 7. Feature f1 for different fabric fault categories. Figure 8. Scores plot for PC1 and PC2 for different fabric fault 
categories.
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they preserve from the original dataset. It 
was found that the principal components, 
which represent 99% of the total vari-
ance, are the first thirteen components, 
as shown in Table 1, which means a re-
duction in data dimensionality of about 
64%. The use of the remaining principal 
components will increase the dimen-
sionality of the data without offering a 
lot of information regarding the original 
data. Since the principal components are 
uncorrelated, presentation of the data 
projected on the new principal compo-
nent axes demonstrates their usefulness. 
Figure 8 shows the scores plot obtained 
from the PCA with a representation of 
PC2 versus PC1 for different fabric fault 
categories. Two main conclusions can be 
drawn from this figure: Firstly there is no 

distribution pattern for the data plotted, 
which is scattered on the graph. This em-
phasises the importance of the PCA pro-
cedure, where no correlations between 
the principal components exist. Second-
ly, although the data are scattered, they 
form clusters that might be useful in the 
classification of faults during application 
of the ANN. Those clusters are not crisp 
for all groups but they have relatively 
distinguishable centres that are separated 
apart, and even the category that is not 
shown in the figure (for stained fabrics) 
was excluded because it was far from the 
categories plotted, which will shrink the 
scale of the figure if included. 

Classification of the fabric faults was 
performed using pattern recognition arti-

ficial neural networks (ANN), which are 
special cases of feedforward neural net-
works that utilise certain transfer func-
tions (tansig) and training algorithms. 
There is a weight for each connection 
link (W) and a bias term (b) which are 
adjusted during the training process. Two 
ANN’s were constructed during the study 
with the same architecture, only differing 
in the number of neurons in the input lay-
er. The first network (called ANN1) was 
constructed using all features as inputs, 
as demonstrated in Figure 9. ANN1 has 
two hidden layers that include 25 neu-
rons in the hidden layer and 6 neurons in 
the output layer. The network was trained 
for a part of the dataset that represents all 
fabric fault categories and was selected 
randomly. The network also was tested 
for the remaining part of the dataset that 
was not used during the training. A sec-
ond network (ANN2) was constructed 
with 13 neurons in the input layer as the 
PCA was applied to the inputs of this net-
work. The network (ANN2) was trained 
and tested for the same training and test-
ing datasets used with the first network 
(ANN1). 

The performance of the ANNs can be 
quantitatively assessed from the results 
of the fabric images tested, as summa-
rised in Table 2 and shown in Figures 10 
& 11. Four measures were used to com-
pare the performance of both ANNs. The 
first measure is the percentage of the 
correct classification rate (CCR), which 
represents the percentage of all faults 
that were successfully classified in the 
networks. The CCR for ANN1 was found 
to be 73.33%, while it increased to 90% 
for ANN2. The false alarm rate (FAR) is 
the second comparison measure and re-
fers to the number of defect free samples 
that were classified as faulty samples, 
expressed as a percentage of the total 
number of defect free samples. The FAR 
was found to be 15% for ANN1, while 
it decreased to 5% for ANN2, which is 
considered as an improvement in perfor-
mance. On the other hand, the third meas-
ure i.e. the false negative rate (FNR), 
which refers to the faulty samples that 
are classified as defect-free, was found 
to be 20% for ANN1, while it decreased 
to 7.5% with ANN2. The relatively high 
FNR of faulty fabrics that pass through 
the system (ANN1) without being de-
tected should be taken seriously because 
this will lead to a faulty end product if the 
system is industrially applied. The per-
centage of faults that were detected but 
classified in the wrong category is con-

Table 2. Comparison of the performance of ANN1 and ANN2.

ANN1 (Full feature set) ANN2 (Reduced feature set 
after PCA)

Correct classification rate (CCR), % 73.33 90
False alarm rate (FAR), % 15 5
False negative rate (FNR), % 20 7.5
Miss-classification rate (MCR), % 7.5 5

Figure 9. ANN with all features considered as inputs; 36, 25, 6, and 6 number of neurons.

Figure 10. Performance of ANN1 (without PCA) in predicting different fabric fault cat-
egories.

36

25 6

6

Input

Output

Output
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sidered as the fourth comparing meas-
ure, called the miss-classification rate 
(MCR). The MCR was found to be 7.5% 
for ANN1, which improved to 5% with 
the application of ANN2. 

 It is worthy to note that the similarity in 
the features of categories No. 1 and No. 4 
(as noted earlier during the discussion of 
feature f1 (Figure 7) might be the reason 
for a major part of the FNR in both net-
works failing to detect stop-mark defects. 
This result holds true because the first 
order statistical features applied in this 
study are usually not able to handle these 
types of fabric faults as long as the fabric 
picture has a similar number of threads, 
even if they are irregularly distributed. 

n	Conclusion
This work utilised a digital camera to 
acquire and transmit fabric images to a 
computer which enhances and extracts 
the features thereof. A large set of fea-
tures composed of statistical and spectral 
features (using FFT) was used. Obser-
vation of the features shows different 
behaviours in the way they converge or 
diverge for a certain fabric fault. PCA 
was used to reduce the number of fea-
tures without losing the high variation in 
data. A reduction to 36% of the original 
data size was achieved while preserving 
about 99% of the information in the orig-
inal data. Two artificial neural networks 
were constructed with the same archi-
tecture and one of them was fed with the 
full feature dataset and the other with the 
reduced dataset. The performance of the 

network implemented after application of 
the PCA surpasses that of the other net-
work in all aspects of characterisation. 
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Figure 11. Performance of ANN2 (with PCA) in predicting different fabric fault categories.


