to the substrates. The antibacterial efficacy of berberine chloride on all three substrates was also found to be durable against laundering and light exposure. A suggested future work could focus on comparing the efficacy of berberine chloride with other natural and commercially available antibacterial agents.

Acknowledgments

This research was supported by the United States Department of Agriculture Multi-State Research, Project S-1026 (Textile Materials and Technologies addressing Energy, Health and other National Security Issues) via a grant from the Colorado Agricultural Experiment Station.

References

- Nguyen Q.; (2009). Hospital-acquired infections. http://emedicine.medscape. com/article/967022-overview. Accessed June 2010.
- CDC website, http://www.cdc.gov/ncidod/ dhqp/hai.html, accessed August 2010.
- Klevens R. M., Edwards J. R., Richards Jr. C. L., Horan T. C., Gaynes R. P., Pollock D. A., Cardo D. M.; Public Health Reports, Vol. 122(2), (2002) pp. 160-166.
- Burke J. P.; New England Journal of Medicine, Vol. 348(7), (2003) pp. 651-656.
- Gastemeier P., Balderjahn-Stamm S., Hansen S., Zuschneid I., Sohr D., Behnke M., Vonberg R-P., Ruden H.; American Journal of Infection Control, Vol. 34, pp. 603-605.
- Al-Barrak A., McLeod J., Embil J., Thompson G., Aoke F., Nicolle L.; American Journal of Infection Control, Vol. 26(1), (1998) p. 189.
- 7. Dusaj S.; Technical Textile International, Vol. 15(5), (1993) pp. 20-22.
- Neely A. N., Maley M. P.; Journal of Clinical Micriobiology, Vol. 38(2). (2000) pp. 724-726.
- Granzow J. W., Smith J. W., Nichols R. L., Waterman R. S., Muzik A. C.; American Journal of Infection Control, Vol. 26(2), (1998) pp. 85-93.
- Sun G., Worley S. D.; Journal of Chemical Education, Vol. 82, (2005), pp. 60-64.
- Borkow G., Gabbay J.; Medical Hypothesis, Vol. 70, (2008) pp. 990-994.
- Hussein S. A. M., Barakat H. H., Merfort I., Nawwar M. A. M.; Phytochemistry, Vol. 45(4), (1997) pp. 819-823.
- Yu H. H., Kim K. J., Cha J. D., Kim H. K., Lee Y. E., Choi N. Y., You Y. O.; Journal of Medicinal Food, Vol. 8(4), (2005) p. 454.
- 14. Kim T. K., Son Y. A.; Dyes and Pigments, Vol. 64(1), (2004) pp. 85-89.
- Gupta D., Khare S. K., Laha A.; Coloration Technology, Vol. 120, (2004) pp. 167-171.
- American Association of Textile Chemists and Colorists. (2009). Technical Manual. Research Triangle Park, NC: Author.

Received 17.08.2010 Reviewed 28.11.2010

Technical University of Lodz Faculty of Material Technologies and Textile Design

Department of Man-Made Fibres

Research:

The Department of Man-Made Fibres has more than 50 years of history and experience in man-made fibres

The main scientific interest of the Department can be divided into several fields:

- composite interactive cellulose fibres based on NMMO,
- nanofibres from biodegradable polymers,
- advanced materials based on biodegradable polymers for medical and technical applications,
- special fibres based on advanced polymers.

The Department is equipped with advanced devices for spinning solution preparation and fabrication of fibres and nanofibres by different methods (melt state, dry-wet, wet spinning).

Cooperation:

The Department is currently looking for partners from academia or industry.

We offer:

The Department is equipped with various devices for the determination of the properties of fibres and polymers:

- thermal analysis (TGA and DSC),
- rheometers and devices to determine the melt flow rate,
- devices for determining the mechanical properties of fibres (e.g. tensile tester),
- spectrometers (FTIR, UV-vis),
- optical microscopes.

For more information please contact:

Department of Man-Made Fibres Technical Universiy of Lodz ul. Zeromskiego 116, 90-924 Łódź, Poland tel.: (48) 42-631-33-59

e-mail: Piotr.Kulpinski@p.lodz.pl web site: http://www.k41.p.lodz.pl/