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Abstract
A model of the compressing process of a 3D distance knitted fabric was related to a 
single connector fastened on one side by an articulated joint, as well as fastened on 
both sides by fixed joints, considering the connector as a slender rod with an assumed
shape. The compressing of an elastic rod in the physical and mathematical models was 
based on assumptions considering the morphology of the knitted fabric as well as the 
mechanical properties of threads – monofilaments placed in the internal layer of the
knitted fabric. Calculation methods and algorithms were developed for the determina-
tion of the functional dependencies between the force compressing the knitted fabric 
and deflection, as well as the description of the curves representing the shape of the
compressed rod. A computer simulation of compressing the rod, which connects both 
outside layers of the knitted fabric, was carried out with the use of the ‘Mathematica’ 
program, taking into consideration the variable parameters of the model. The consid-
erations carried out in this article are significantly based on our previous publication,
and therefore the assumptions of the physical model and detailed descriptions of the 
analysis are not included.
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 Introduction
The work presented herein is a continu-
ation and broadening of the theoretical 
considerations of compressing a single 
connector joining the two outside planes 
of a distance knitted fabric carried out 
in our previous work. The models de-
scribed below selectively concern the 
following different fastening variants: 
two-side articulated joints and one-side 
and two-side fixed joints. Considering
the particular cases, we assumed that 
no mutual displacement of the outside 
planes take place. However, praxis indi-
cated that, in the case of some stitches 
of the knitted distance fabric, the outside 
planes displace mutually during com-
pression.

The fastening variants of the connector 
we assumed were not randomly chosen. 
The model of articulated fastenings is 
related to empirically stated shapes of a 
compressed monofilament in the 3D sys-
tem.

The model presented in this paper con-
sidering the two-side fastening of the 
connector by fixed joints is related to a
knitted fabric with a compact structure 
of the outside layers, which are some-
times even laminated. On the other hand, 
the system with a one-side articulated 
joint of the connector may be related to 
a loose knitted fabric with a small cover 
factor of one of the knitted fabric’s out-
side layers.

 Physical model of the 
compressing process

Below are presented physical models of 
compressing a slender, elastic rod with an 
assumed shape. The general assumption 
accepted the fastening of the rods as one 
side articulated and both sides fixed [2-7].
Figure 1 presents a physical model with 
the following designations: g0 – initial 
fabric thickness, gi – fabric thickness dur-
ing deflection, ∆g = deflection (deforma-
tion) of the rod, p1, p2 – planes including 
the knitted fabric’s loops, y0 – difference 
in the positions of the rod in the longitu-
dinal direction (y), P1 – force compress-
ing the bent rod, S1 – transversal force of 
the reaction of the base.

 Mathematical models  
of the compressing process of 
a single connector

The above-presented physical models al-
low us to formulate differential equations 
of the fourth order that connect the load-
ing of the rod with its deformations. We 
consider the rod (connector) discussed as 
two separate rods formed by its projec-
tion on the planes 0xz and 0yz.

The differential equation that describes 
the deformations of the rod influenced by
the loads has the following form:
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where:
y0 (x) and y1 (x) are the initial buckling, and the buckling occurring as a result of the 
force P1 action, respectively; 
S1 – is the force of reaction of the transversal, sliding support, 
E – is the Young modulus, and
J – is the modulus of inertia of the bent object’s cross section. 

Differentiating twice the equation (1) toward ‘x’, we obtain subsequently: 
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where:
y0 (x) and y1 (x) are the initial buckling, 
and the buckling occurring as a result of 
the force P1 action, respectively;
S1 – is the force of reaction of the trans-
versal, sliding support,
E – is the Young modulus, and 
J – is the modulus of inertia of the bent 
object’s cross section.

Differentiating twice the Equation (1) to-
ward ‘x’, we obtain subsequently:

1 1( )
( )

P y x Sy x
EJ

′ −′′′ =  and 1 ( )
( )IV P y xy x

EJ
′′

= where: 0 1( ) ( ) ( )y x y x y x= + . (1.a)

Equation (1.a) finally takes the form: 
2

1( ) ( ) 0IVy x k y x′′+ = where: 2 1
1

Pk
EJ

= .

The general integral of equation (1) may be written in the form of: 

11 21 31 1 41 1( ) sin( ) cos( )y x C C x C k x C k x= + + + .                                                                 (2) 

We determine the integration constants C11, C21, C31, and C41 for model A in Figure 1 from 
the following boundary conditions: 

0 11 21 31 1 41 1 0

0 11 21 0 31 1 0 41 1 0

0 21 31 1 1 0 41 1 1 0

2 2
31 1 1 41 1 1

( ) sin( ) cos( ) ,

( ) 0 sin( ) cos( ) 0,

( ) cos( ) sin( ) ,

( ) 0 cos( ) sin( ) 0.

y g y C C g C k g C k g y
y g C C g C k g C k g
y g tg C C k k g C k k g tg
y g C k k g C k k g

β β

∆ = → + ∆ + ∆ + ∆ =
= → + + + =

′ = → + − =
′′ ∆ = → − ∆ − ∆ =

(3)

On the other hand, we determine the integration constants C11, C21, C31, and C41 for model B 
in Figure 1 from the following set of boundary conditions: 

11 41

0 11 21 31 1 41 1 0

21 31 1

21 31 1 1 41 1 1

(0) 0 0,

( ) sin( ) cos( ) ,

(0) ,

( ) cos( ) sin( ) .

i i i i

i i i

y C C
y g y C C g C k g C k g y
y tg C C k tg
y g tg C C k k g C k k g tg

α α
β β

= → + =
= → + + + =

′ = → + =
′ = → + − =

(4)

The descriptions of the integration constants C11, C21, C31, and C41 obtained from the equation 
system are not presented in this paper, taking into consideration their very complex shape. 

For model A, we find the dependency connecting force P1 with deformation ∆g in the form of 
an implicit function f(P1, ∆g) = lp by substituting the integration constants C11, C21, C31, and 
C41 determined from the equation system (3) into the condition of the length of the bent rod, 
and finally obtain: 

2 2
21 31 1 1 41 1 1

1

{ [ sin( ( )) sin( ( ( 1) )] [ cos( ( )) cos( ( ( 1) ))]} ( )
n

i i i i i i
p

j

g g g g g gC C k g j k g j C k g j k g j l
n n n n n n=

+ ∆ + − ∆ + − + ∆ + − ∆ + − + =∑

.  (5) 

Similarly as for model A, for model B we find the dependency connecting force P1 with 
deformation ∆g in the form of an implicit function f(P1, ∆g) = lp by substituting the 
integration constants C11, C21, C31, and C41 determined from the equation system (4) into the 
condition of the length of the bent rod, and finally obtain: 

2 2
21 31 1 1 41 1 1

1

{ [sin( ) sin( ( 1) )] [ cos( ) cos( ( 1) )]} ( )
n

ji i i i i
p

j

gg g g g gC C k j k j C k j k j l
n n n n n n=

+ − − + − − + =∑
.  (6) 

Figure 2 presents the mechanical characteristics of the compressed monofilament for the 
variants A and B [9], as well as the variant described in the previous article [8] – the rod 
connected by two artificial joints. 
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f(P1, ∆g) = lp by substituting the integra-
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Equations 2, 3, 4, 5 and 6.

Figure 2. Mechanical characteristics P1 
= f(∆g) of a compressed monofilament for
three variants: a) two articulated fastenings, 
b) one articulated and one fixed fastening,
c) two fixed fastenings.
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complex considerations concerned with 
the structure and strength properties of 
3D distance knitted fabrics. The hitherto 
discussed calculation model takes into 
consideration only a simple loading sys-
tem that uniformly loads all the monofil-
aments of the compressed knitted fabric. 
While using more complex loading sys-
tems, such as convex plates or ball-like 
ended pistons, the compressed outside 
layer of the 3D knitted fabric deforms. 
However, this does not change the fact 
that the sum of action of the individual 
connectors contributes to the total effect 
of compressing the fabric. The connec-
tors are deformed differentially, and take 
different loads according to the mechani-
cal characteristic P1 = f(∆g).

 Simulation of the compressing 
process on the basis  
of mathematical models

The first simulation presented shows the
shapes of the monofilament under the ac-
tion of force P1. Observation of the con-

nectors’ geometry, as well as the math-
ematical analysis, [9] shows that the rod 
representing the monofilament takes the
shape of a fragment of a sinusoid. The 
shape of this curve depends on the value 
of the force P1. With an increase in the 
force value, an increase in the amplitude 
of the curve occurs, but the curve tends to 
be narrower. The cause of increasing P1 is, 
from the physical point of view, a decrease 
in the curvature radius of the sinusoid 
apex. Figure 3 presents a broad spectrum 
of deflections caused by force P1.

The compressing curves of both variants 
considered do not differ much apart on 
the difference that in the model B a curva-
ture of the upper part of the rod occurred, 
caused by the fastening. This curvature, 
causing the rod to compress according to 
model B, is less susceptible to deforma-
tion than the rod of model A.

The second simulation was aimed to 
check the influence of the geometry of
the distance knitted fabric on the value 

of compressing force P1. Essential here is 
the influence of the difference in the fas-
tening positions of the rod in the longitu-
dinal direction (parameter y0 in Figure 1) 
on the value of this force. The parameter 
y0 takes two different values: if the sys-
tem is symmetric, then y0 ≈ 0 mm; if it is 
asymmetric, then y0 = ± 2 mm.

Figure 4 presents two families of curves 
that represent the shape of the rod of 
equal deformations ∆g, but differentiated 
by the parameter y0. For model, A we 
have the following lines:
 lines 1 – deflection∆g=3mm(P1 = 1.73 cN 

for y0 = 2 mm, P1 = 1.65 cN for  
y0 = 0 mm, P1 = 1.57 cN for y0 = -2 mm)

 lines 2 – deflection∆g=5mm(P1 = 3.49 cN 
for y0 = 2 mm, P1 = 3.35 cN for  
y0 = 0 mm, P1 = 3.20 cN for y0 = -2 mm).

For mode B, we have:
 lines 1 – deflection ∆g = 3 mm 

(P1 = 3.073 cN for y0 = 2 mm, P1 = 3.08 cN 
for y0 = 0 mm, P1 = 3.07 cN for y0 = -2 mm)

 lines 2 – deflection ∆g = 5 mm 
(P1 = 6.34 cN for y0 = 2 mm, P1 = 6.35 cN 
for y0 = 0 mm, P1 = 6.34 cN for y0 = -2 mm).

The differences in the bending forces 
that cause the same deflections result
from the different geometries of the rods 
(parameter y0). The rods are differenti-
ated by shape (various functions describe 
the shape of these curves), and at the 
same time they have different curvature 
radii of these curves; the consequence 
of this is that different forces cause the 
same deformation. From the mathemati-
cal analysis results, it can be seen that the 
rod compressed according to model B is 
practically insensitive to the changes of 
parameter y0. Within the range that we 
tested, the parameter y0 does not influence
the value of the compressing force P1.

The third simulation concerns the influ-
ence of the monofilament’s shape on the
value of the compressing force. This is a 
problem of different buckling forms oc-
curring, resulting in equal deflections of
the same rod (and with the same geom-
etry of fastening its ends), causing dif-
ferent values of force P1, and oppositely 
the same value of force P1 may cause dif-
ferent deformations. The first case (equal
values of deflection and different values
of force P1) is shown in Figure 5.

For a rod compressed according to model 
A, a deflection of ∆g = 5 mm is caused
by the forces P1 of 3.48 cN, 3.62 cN, 
10.39 cN, and 10.62 cN, whereas for a rod 

Figure 3. Simulated deflection lines of the rod formed as the effect of the force P1 impact.

Figure 4. Family of curves representing the shape of the monofilament with the same
deformations ∆g and differentiated by parameter y0 .
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Figure 5. Different forms of the rod deflection caused by the action of different forces P1.

Figure 6. Different shapes of rod deflection caused by the impact of the same force.

of this phenomenon, which was con-
firmed empirically, may be explained in
the following way: the greater the cur-
vatures of the rod are, the greater value 
of force P1 causes the same deflection
∆g. This is clearly directly visible from 
the geometry of the compressed rods, as 
well as from the mathematical analysis 
carried out.

 Summary
1. Physical and mathematical models of 

the compressing process of an elastic, 
slender rod with an assumed shape, 
fastened by one- or two-side fixed
joints, are presented in this paper. The 
presented models are considered for 
compressing a 3D distance knitted 
fabric. The mechanical characteristics 
of the compressed rods were analysed 
and the rod’s shapes discussed con-
sidering the aspect of the connector’s 
tensions and the deformations of the 
knitted 3D fabric. The analysis of the 
phenomena of compressing the fabric 
included:

 the influence of the fastening geom-
etry of a single monofilament on the
value of the force compressing this 
monofilament.

 the influence of different forms of
buckling of the compressed mono-
filament, which occur on the value of
deflection ∆g under the impact of the
compressing force P1.

2. A computer simulation was carried 
out of the process of compressing a 
model concerned with the knitted fab-
ric, which indicated that 

 a change in the parameter y0 (mutual 
displacement of the connectors’ fas-
tenings), in model B does not influ-
ence the value of force P1, whereas in 
model A, it causes changes within the 
range of 8%-10% of the P1 value;

 in model A, for the second buckling 
form of the bent rod, the force P1 is 
nearly 200% higher in comparison 
with the value for the first buckling
form for the same deflection ∆g. In
model B, for the second form of buck-
ling of the bent rod, the force P1 is 
nearly 150% higher;

 in model A, for the second buckling 
form of the bent rod, the deflection
∆g caused by the constant value of 
force P1 is higher by nearly 175% in 
comparison with the value for the first
buckling form. In model B, for the 
second buckling form, the bending of 
the rod is higher by 360%.

compressed according to model B, a de-
flection of ∆g = 3 mm is caused by P1 of 
3.07 cN, 4.01 cN, 9.93 cN, and 7.58 cN.

The second case (equal values of force 
P1 causing different deflections ∆g of the
rod) is presented in Figure 6.

For the rod bent according to model A, 
the force P1 = 4 cN causes deflections
∆g of 1.75 mm, 2.05 mm, 5.25 mm, and 
5.32 mm, whereas for that bent accord-
ing to model B, the same force causes 
deflections of 3.80 mm, 2.99 mm,
0.81 mm, and 0.31 mm. The occurrence 
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 Conclusions
In the future parts of this research work, 
mathematical models will be presented 
of connectors considering mutual dis-
placements of the outside layers of the 
knitted fabric. In parallel, we will con-
duct activity into designing and build-
ing an experimental model related to the 
three models of the 3D distance knitted 
fabric that we elaborated. This model 
will also be aimed to verify further 
mathematical models describing the dis-
placement of the outer layers of the 3D 
distance knitted fabric mentioned in this 
paper. The next stage of our work will 
be the development of an elaboration 
model for knitted fabrics loaded non-
uniformly and loaded by way of objects 
with a given shape.

The solutions presented herein should be 
considered as an introduction to further 
research work aimed at finding optimum
calculation models for 3D distance knit-
ted fabrics in order to determine the me-
chanical properties of these fabrics, but 
firstly at estimating their susceptibility
to compression, as well as adaptation of 
the calculation mechanism created for 
solving real problems occurring while 
designing and applying 3D distance knit-
ted fabrics.
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R&D activity includes the following positions, among others:
� biopolymers,
� functional, thermoplastic polymers,
� biodegradable polymers and products from recovered wastes,
� biomaterials for medicine, agriculture, and technique,
� nano-technologies, e.g. nano-fibres, and fibres with nano-additives,
� processing of fibres, films, micro-, and nano- fibrous forms, and nonwovens,
� paper techniques, new raw material sources for manufacturing paper pulps,
� environmental protection,

The Institute is active in inplementig its works in the textile industry, medicine, 
agriculture, as well as in the cellulose, and paper industries.

The Institute is equipped with unique technological equipment, as the 
technological line for fibre (e.g. cellulose, chitosan, starch, and alginate) spinning 
by the wet method.

The Institute organises educational courses and workshops in fields related to its 
activity.

The Institute’s offer of specific services is wide and differentiated, and includes:
� physical, chemical and biochemical investigations of biopolymers and 

synthetic polymers,
� physical, including mechanical investigation of fibres, threads, textiles, and 

medical products,
� tests of antibacterial and antifungal activity of fibres and textiles,
� investigation in biodegradation,
� investigation of morphological structures by SEM and ESEM
� investigation and quality estimation of fibrous pulps, card boards, and paper 

products, including paper dedicated to contact with food, UE 94/62/EC tests, 
among others.

� Certification of paper products.

The Institute is active in international cooperation with a number of corporation, 
associations, universities, research & development institutes and centres, and 
companies.

The Institute is publisher of the scientific journal ‘Fibres and Textiles in Eastern 
Europe’.
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