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A Mathematical Model of Fancy Yarns’ 
Strength. The First Model Developed  
in the World
Abstract
The mathematical models of the strength of fancy yarns with continuous effects (plied two- 
and three-component yarns and loop yarn) were developed on the basis of the mechanical 
rules, phenomena occurring between the staple fibres in the component yarns and the final
structure of fancy yarns. Three types of distribution of the length of the staple fibres (steady,
trapezium and normal) and two types of fibre migration (full migration and lack of migra-
tion) were considered. Experimental verification was conducted and the larger influence of
the distribution of the fibres’ length than the migration of fibres on the strength of the final
fancy yarns was proved. The essential influence of the component yarns’tensions during the
twisting process on the structure and strength of fancy yarns was shown.

now to lead out mathematical formulas, 
which are a function of the properties of 
the staple fibres, plain component yarns
and the structure of the final fancy yarns.
The mathematical rules presented in this 
work are very complicated; however, it is 
possible to assess all the used parameters 
on the basis of metrology investigation, 
which showed the experimental verifica-
tion of these models. The conclusions of 
the theoretical and experimental parts al-
low the assessment of which parameters 
of the staple fibres influence the strength
of fancy yarns in an essential way. The 
theoretical models were led out for two- 
and three-component yarns and loop yarn 
in several aspects of distribution of length 
of the staple fibres (steady, trapezium and
normal) and the form of staple yarns’ 
migration in the component plain yarns. 
The models were led out on the basis of 
energy conservation law without consid-
eration of the heat losses. The Almont 
friction law for staple fibres was used.

The following assumptions were taken 
into account:
 Yarns are incompressible,
 The lateral reactions from component 

yarns are considered,
 The twist of a single yarn is constant 

along the length and diameter of the 
yarn,

 Component yarns have perfect even-
ness of linear density,

 The density of yarns is constant along 
their length and diameter.

The coefficient of the shape of fancy yarns
was introduced as an essential parameter 
that describes the structure of fancy yarns 
and their strength. The following scien-
tific thesis was constructed: “The knowl-
edge of the structure of fancy yarns and 
phenomena occurring during their twist-

ing and elongation allows their strength 
to be designed”. The experiments were 
conducted on the basis of a 15-element 
experiment plan with plying twist and 
different structures of fancy yarns as the 
inputs. Cotton 25-tex yarns were used as 
the component yarns. These yarns were 
plied on the ring twisting machine in the 
same direction as the direction of the 
twist occurring in the component yarns.

 The structure of fancy yarns 
with continuous Effects 

The marl yarn structure
The simplest of the fancy effects, a marl 
yarn, is one in which two or three or more 
component yarns of the same count, twist 
and raw materials, but of different col-
ours, are folded together to form a bal-
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Figure 1. Two-component marl yarn; a) scheme 
[1]; b) view [2].

a)

b)

 Introduction
A detailed description of fancy yarns’ 
properties (mechanical and structural) 
has not been made until now. Fancy yarns 
exist on the textile market as a main raw 
material for knitting and weaving prod-
ucts and they are now very popular in 
the focus of modern fashion. All trials 
of designing and producing fancy yarns 
are conducted in the spinning mills on 
the base of the very expensive and oldest 
“trial and error” method. The widely ac-
cessible knowledge about the properties 
of plain yarns and the modern mathemat-
ical and instrumental analysis allow us 
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anced structure of fancy yarn. All the 
component yarns conduct the longitude 
and lateral forces in the same way. The 
helix lines, which construct the compo-
nent yarns, have the same diameter, angle 
and pitch. (Figure 1, see page 9).

The vectorial equation of the helix line in a 
natural parameterization is as follows [1]:

3

          (1) 
where: a – amplitude of the spiral line, 
            b – spiral lead, 
            s – natural parameter (the length of the arc), 
            e – unit vectors. 

The spiral yarn structure 

The spiral yarn is a plied yarn, which displays a characteristic smooth spiralling of one 
component around the other. The core yarn is distinguished as a straight line among the 
effect yarns, which constitute the spirals. It may be formed by one, two or more yarns 
being delivered at a greater rate to the twisting zone than the core yarn is supplied. 
Fig.3. The higher longitude stress is conducted by the core yarn and this yarn is most 
susceptible to the break during elongation. However, the lateral stresses from the effect 
yarns are conducted to the direction of the core yarn. The second curvature of a single 
filament in the coordination of a component yarn is [3]: τ = dφ/dz    (2)

a)
b) c)

Figure 2. a) wrap yarn and the spiral line formed as a double helix by a single fibre in 
a wrap yarn [3]; b) the path of the filament in the ply [3]; c) the generation 
of the helix by the rotating vector [3]. 

The second curvature of a single filament in the coordination of a spiral yarn is: 

τ = = dφ/dz   + (1/a) sin α  cos α                                                                     (3) 
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where:
a – amplitude of the spiral line,
b – spiral lead,
s – natural parameter (the length of the arc),
e – unit vectors.

The spiral yarn structure
The spiral yarn is a plied yarn, which dis-
plays a characteristic smooth spiralling 
of one component around the other. The 
core yarn is distinguished as a straight 
line among the effect yarns, which con-
stitute the spirals. It may be formed by 
one, two or more yarns being delivered 
at a greater rate to the twisting zone than 
the core yarn is supplied (Figure 2a). 
The higher longitude stress is conducted 
by the core yarn and this yarn is most sus-
ceptible to the break during elongation. 
However, the lateral stresses from the ef-
fect yarns are conducted to the direction 
of the core yarn. The second curvature of 
a single filament in the coordination of a
component yarn is [3]:

τ = dφ/dz       (2) 

The second curvature of a single filament
in the coordination of a spiral yarn is:

τ = = dφ/dz + (1/a) sin α cos α  (3)

where:
a – radius of the spiral yarn formed by the 
axis of the plied yarn,
α – angle between the axis “z” and the 
spiral line formed by the axis of the plied 
yarn.

The twist in the component yarn occur-
ring as the effect of the plying process is 
[14] (Figures 2b, 2c)

4

where: a – radius of the spiral yarn formed by the axis of the plied yarn, 
α – angle between the axis “z” and the spiral line formed by the axis of the plied 
yarn.

The twist in the component yarn occurring as the effect of the plying process is [14] 
(Figures 2b, 2c ) 

         (4) 
where: t – twist of a single yarn (before the plying process), 
           T – twist of plying, 
           R – radius of the plied yarn. 

The parametric equation of the line, which consists of the filament in the transverse 
plane, is epihelix:

X = a cosφ + r cos (γ – ζ);

Y = a sinφ + r sin(γ – ζ)                                                                                (5) 

where: φ – angular position of the ply axis, ζ – angular position of the filament with 
respect to the ply axis, γ – initial value of ζ, r – radius of the filament helix. 

The loop yarn structure 

Loop yarn with a sinusoidal effect 

Lloop yarn with a sinusoidal effect is a compound yarn comprising a twisted core yarn 
with an effect yarn (or roving yarn) combined with a binding yarn. The effect yarn 
produces wavy projections on the fancy yarn surface. The effect is achieved by the 
differential delivery of the effect component as compared with the core yarns. On the 
other hand, the overfeed of the effect yarn is a little higher than the crimp of the effect 
yarn in the spiral yarn. This is the simplest form of loop yarn and the core yarn is not 
yet straight. The basic longitudinal stress is conducted by the core and binding yarns. 
The effect yarn is under lateral stress at the points of contact of the core, effect and 
binding yarns. (Figures 3a, 3b). 

14 222 +
+=

TR
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where:
t – twist of a single yarn (before the ply-
ing process),
T – twist of plying,
R – radius of the plied yarn.

Figure 2. a) Graphical wrap yarn and the spiral line formed as a double helix by a single 
fibre in a wrap yarn [3]; b) the path of the filament in the ply [3]; c) the generation of the
helix by the rotating vector [3].

Path of filament in ply Generation of helix by rotating vector

a) b) c)

Figure 3. The loop yarn with a sinusoidal effect a) the structure of yarn [5]; b) the line of 
cycloid [6].

a)

b)

Figure 4. The loop yarn with a boucle effect a) the structural model of the yarn [5]; b) the 
line of trochoid [6].

a)

b)

Figure 5. The structural model of snarls fancy yarn [5].
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(designations: eµ  – coefficient of friction of fibres in the effect yarn, fEγ – density of 

fibres in the effect yarn, Eu  – diameter of fibres in the effect yarn, RF  – tension of the 

core yarn, Rre – relative change of diameter of the core yarn during the process of 

elongation of fancy yarn, 0T  – twist of plying under the initial tension).;

Eq. 12 – two-component core yarn; Eq. 13 - three-component effect yarn; Eq. 14 – 
three-component core yarn; Eq. 15 – three-component binding yarn; Eq. 16 – loop 
effect yarn; Eq. 17 – loop core yarn; Eq. 18 – loop binding yarn. 
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(designations: eµ  – coefficient of friction of fibres in the effect yarn, fEγ – density of 

fibres in the effect yarn, Eu  – diameter of fibres in the effect yarn, RF  – tension of the 

core yarn, Rre – relative change of diameter of the core yarn during the process of 

elongation of fancy yarn, 0T  – twist of plying under the initial tension).;

Eq. 12 – two-component core yarn; Eq. 13 - three-component effect yarn; Eq. 14 – 
three-component core yarn; Eq. 15 – three-component binding yarn; Eq. 16 – loop 
effect yarn; Eq. 17 – loop core yarn; Eq. 18 – loop binding yarn. 
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(designations: eµ  – coefficient of friction of fibres in the effect yarn, fEγ – density of 

fibres in the effect yarn, Eu  – diameter of fibres in the effect yarn, RF  – tension of the 

core yarn, Rre – relative change of diameter of the core yarn during the process of 

elongation of fancy yarn, 0T  – twist of plying under the initial tension).;

Eq. 12 – two-component core yarn; Eq. 13 - three-component effect yarn; Eq. 14 – 
three-component core yarn; Eq. 15 – three-component binding yarn; Eq. 16 – loop 
effect yarn; Eq. 17 – loop core yarn; Eq. 18 – loop binding yarn. 
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(designations: eµ  – coefficient of friction of fibres in the effect yarn, fEγ – density of 

fibres in the effect yarn, Eu  – diameter of fibres in the effect yarn, RF  – tension of the 

core yarn, Rre – relative change of diameter of the core yarn during the process of 

elongation of fancy yarn, 0T  – twist of plying under the initial tension).;

Eq. 12 – two-component core yarn; Eq. 13 - three-component effect yarn; Eq. 14 – 
three-component core yarn; Eq. 15 – three-component binding yarn; Eq. 16 – loop 
effect yarn; Eq. 17 – loop core yarn; Eq. 18 – loop binding yarn. 
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(designations: eµ  – coefficient of friction of fibres in the effect yarn, fEγ – density of 

fibres in the effect yarn, Eu  – diameter of fibres in the effect yarn, RF  – tension of the 

core yarn, Rre – relative change of diameter of the core yarn during the process of 

elongation of fancy yarn, 0T  – twist of plying under the initial tension).;

Eq. 12 – two-component core yarn; Eq. 13 - three-component effect yarn; Eq. 14 – 
three-component core yarn; Eq. 15 – three-component binding yarn; Eq. 16 – loop 
effect yarn; Eq. 17 – loop core yarn; Eq. 18 – loop binding yarn. 
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(designations: eµ  – coefficient of friction of fibres in the effect yarn, fEγ – density of 

fibres in the effect yarn, Eu  – diameter of fibres in the effect yarn, RF  – tension of the 

core yarn, Rre – relative change of diameter of the core yarn during the process of 

elongation of fancy yarn, 0T  – twist of plying under the initial tension).;

Eq. 12 – two-component core yarn; Eq. 13 - three-component effect yarn; Eq. 14 – 
three-component core yarn; Eq. 15 – three-component binding yarn; Eq. 16 – loop 
effect yarn; Eq. 17 – loop core yarn; Eq. 18 – loop binding yarn. 
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Equations 9, 10, 11, 12, 13 and 14.

The parametric equation of the line, 
which consists of the filament in the
transverse plane, is epihelix: 

X = a cosφ + r cos (γ – ζ);
Y = a sinφ + r sin(γ – ζ)   (5)

where: φ – angular position of the ply 
axis, ζ – angular position of the filament
with respect to the ply axis, γ – initial 
value of ζ, r – radius of the filament he-
lix.

The loop yarn structure
Loop yarn with a sinusoidal effect
Lloop yarn with a sinusoidal effect is a 
compound yarn comprising a twisted 
core yarn with an effect yarn (or roving 
yarn) combined with a binding yarn. The 
effect yarn produces wavy projections 
on the fancy yarn surface. The effect 
is achieved by the differential delivery 
of the effect component as compared 
with the core yarns. On the other hand, 
the overfeed of the effect yarn is a little 
higher than the crimp of the effect yarn in 
the spiral yarn. This is the simplest form 
of loop yarn and the core yarn is not yet 
straight. The basic longitudinal stress is 
conducted by the core and binding yarns. 
The effect yarn is under lateral stress at 
the points of contact of the core, effect 
and binding yarns. (Figures 3a, 3b).

The line that describes the structure of 
the effect yarn is a cycloid (Figure 3b) 

5

a)

b)

Figure 3. The loop yarn with a sinusoidal effect a) the structure of yarn [5]; b) the line 
of cycloid [6]. 

The line that describes the structure of the effect yarn is a cycloid (Figure 3b)

          (6) 

Loop yarn with a boucle effect 

Loop yarn with a boucle effect consists of a core with an effect yarn wrapped around it 
and overfeed so as to produce almost circular projections on its surface. The overfeed of 
the effect yarn should be higher than 150% and this overfeed guarantees that the length 
of the effect yarn is sufficiently large to create regular lock loops. The longitude stresses 
are carried out by the core and binding yarns; however, the transverse stresses are 
carried out by the effect yarn at the points of contact of the binding yarn, core yarn and 
effect yarn and they are higher if the number and surface of the contacts are higher. 
(Figures 4a, 4b).

a
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Loop yarn with a boucle effect

Loop yarn with a boucle effect consists 
of a core with an effect yarn wrapped 
around it and overfeed so as to produce 
almost circular projections on its surface. 
The overfeed of the effect yarn should 
be higher than 150% and this overfeed 
guarantees that the length of the effect 
yarn is sufficiently large to create regu-
lar lock loops. The longitude stresses are 
carried out by the core and binding yarns; 
however, the transverse stresses are car-
ried out by the effect yarn at the points 
of contact of the binding yarn, core yarn 
and effect yarn and they are higher if the 
number and surface of the contacts are 
higher. (Figures 4a, 4b). 

The shape of the effect yarn we can de-
scribe by another type of cycloid line 
(trochoid – Figure 4b): 
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a)

b)

Figure 4. The loop yarn with a boucle effect a) the structural model of the yarn [5]; b) 
the line of trochoid [6].

The shape of the effect yarn we can describe by another type of cycloid line (trochoid – 
Figure 4b):

          (7) 

We can change the shape of the loops by changing the value of λ .

Loop yarn with a snarls effect

Snarl yarn is based around a twisted core yarn and all the structure is wrapped by a 
binding yarn. It is made by a similar method to the loop yarn, but uses as the effect a 
lively, high-twist yarn and a great overfeed. The overfeed of the effect yarn should be so 
large as to ensure the twisted structure of the loops (Figure 5). 

Figure 5. The structural model of snarls fancy yarn [5]. 

( ) ( ) 0;cos1;sin 1 >=−=−= λλλλ MCaitayttax
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Figure 4. The loop yarn with a boucle effect a) the structural model of the yarn [5]; b) 
the line of trochoid [6].

The shape of the effect yarn we can describe by another type of cycloid line (trochoid – 
Figure 4b):

          (7) 

We can change the shape of the loops by changing the value of λ .

Loop yarn with a snarls effect

Snarl yarn is based around a twisted core yarn and all the structure is wrapped by a 
binding yarn. It is made by a similar method to the loop yarn, but uses as the effect a 
lively, high-twist yarn and a great overfeed. The overfeed of the effect yarn should be so 
large as to ensure the twisted structure of the loops (Figure 5). 

Figure 5. The structural model of snarls fancy yarn [5]. 

( ) ( ) 0;cos1;sin 1 >=−=−= λλλλ MCaitayttax (7)

We can change the shape of the loops by 
changing the value of .

Loop yarn with a snarls effect
Snarl yarn is based around a twisted core 
yarn and all the structure is wrapped by 
a binding yarn. It is made by a similar 

method to the loop yarn, but uses as the 
effect a lively, high-twist yarn and a 
great overfeed. The overfeed of the ef-
fect yarn should be so large as to ensure 
the twisted structure of the loops (Fig-
ure 5).

 The coefficient of shape of
fancy yarn

In this work, the coefficient of shape of
fancy yarn was introduced as a very es-
sential parameter, which describes the 
type of fancy yarns and their mechanical 
properties. The coefficient of shape of
fancy yarn is proposed as a ratio of the 
diameter of the external line of the core 
yarn helix to the diameter of the external 
line of the effect yarn helix:

7

The coefficient of shape of fancy yarn 

In this work, the coefficient of shape of fancy yarn was introduced as a very essential 
parameter, which describes the type of fancy yarns and their mechanical properties. The 
coefficient of shape of fancy yarn is proposed as a ratio of the diameter of the external 
line of the core yarn helix to the diameter of the external line of the effect yarn helix: 

        (8) 

where: 0sRD  – the diameter of the external line of the core yarn helix, 0sED  – the 

diameter of the external line of the effect yarn helix, Ra  – the amplitude of the core 

yarn, Ea  – the amplitude of the effect yarn. If the coefficient of shape is smaller, the 
structure of the fancy yarn is more complex. 
In this way, we can divide the fancy yarns with continuous effects according to the 
value of the coefficient of shape: 

• Merle yarn: K=1, 

• Spiral yarn: 
0

0

sE

R

D
d

K = , where: 0Rd – diameter of the core yarn, 

• Loop yarn: 
0

0

sE

R

D
d

K <

– for loop yarn with a sinusoidal effect 
0

0

sE

R

D
d

K ≤

            – for loop yarn with a boucle effect, K is much smaller than 
0

0

sE

R

D
d

            – for loop yarn with a snarls effects, K is the smallest. 

Mathematical models of strength 

The strength of fancy yarn 

The strength of two-component yarn is determined by Equation (9)
where: 1S  and 2S – tension of the component yarns at the point of breaking, 1Tt , 2Tt
and pTt – linear densities of the component yarns and linear density of the final fancy 

yarn,
pe

e
∂
∂ 1  and 

pe
e

∂
∂ 2  – differential of elongation of the component yarns in the function 

of elongation of the final fancy yarn at the point of breaking, 0secα  and 0sec β  – 

secants of the angles of helix lines of the component yarns under the initial tension.
The strength of three-component yarn is determined by Equation (10).
The frictionforces occurring in the component yarn with consideration of the transverse 
forces acting from another component yarn in fancy yarn are described for different 
kinds of yarns by the set of Equations 11-18: 
Eq. 11 – two-component effect yarn

E

R

sE

sR

a
a

D
DK ==

0

0     (8)

where: DsR0 – the diameter of the exter-
nal line of the core yarn helix, DsE0 – the 
diameter of the external line of the ef-
fect yarn helix, aR – the amplitude of 
the core yarn, aE – the amplitude of the 
effect yarn. If the coefficient of shape is
smaller, the structure of the fancy yarn is 
more complex.

In this way, we can divide the fancy 
yarns with continuous effects accord-
ing to the value of the coefficient of
shape:



12 FIBRES & TEXTILES in Eastern Europe January / December / B 2008, Vol. 16, No. 6 (71)

(21)

8

(designations: eµ  – coefficient of friction of fibres in the effect yarn, fEγ – density of 

fibres in the effect yarn, Eu  – diameter of fibres in the effect yarn, RF  – tension of the 

core yarn, Rre – relative change of diameter of the core yarn during the process of 

elongation of fancy yarn, 0T  – twist of plying under the initial tension).;

Eq. 12 – two-component core yarn; Eq. 13 - three-component effect yarn; Eq. 14 – 
three-component core yarn; Eq. 15 – three-component binding yarn; Eq. 16 – loop 
effect yarn; Eq. 17 – loop core yarn; Eq. 18 – loop binding yarn. 
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(designations: eµ  – coefficient of friction of fibres in the effect yarn, fEγ – density of 

fibres in the effect yarn, Eu  – diameter of fibres in the effect yarn, RF  – tension of the 

core yarn, Rre – relative change of diameter of the core yarn during the process of 

elongation of fancy yarn, 0T  – twist of plying under the initial tension).;

Eq. 12 – two-component core yarn; Eq. 13 - three-component effect yarn; Eq. 14 – 
three-component core yarn; Eq. 15 – three-component binding yarn; Eq. 16 – loop 
effect yarn; Eq. 17 – loop core yarn; Eq. 18 – loop binding yarn. 
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The normal stress acting on compnent yarns 

For steady distribution of fibres’ length the normal stress acting on component yarns is 
described for steady distribution of lengthby by equation (19),
where: hl  – length of slippage of staple fibres in the component yarns, wkβcos  – cos of 

the angle of the fibres in the component yarns, fkTt – linear density of the fibres in the 

component yarns, fkL – length of the fibres;

for trapezium distribution of fibres’ length, by equation (20)
where: sF  – % of fibres of which the length is smaller than  minl , maxl and minl –

maximum and minimum lengths of fibres in the component yarn,
and for normal distribution of fibres’ length by equation (21) 
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The normal stress acting on compnent yarns 

For steady distribution of fibres’ length the normal stress acting on component yarns is 
described for steady distribution of lengthby by equation (19),
where: hl  – length of slippage of staple fibres in the component yarns, wkβcos  – cos of 

the angle of the fibres in the component yarns, fkTt – linear density of the fibres in the 

component yarns, fkL – length of the fibres;
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The normal stress acting on compnent yarns 
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        (21) 
Partical derivative of elongation 

The partial derivative of elongation of the component yarns versus the elongation of 
fancy yarn is described by equation (22).
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        (21) 
Partical derivative of elongation 

The partial derivative of elongation of the component yarns versus the elongation of 
fancy yarn is described by equation (22).
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Two component spiral yarn.
Steady distribution, lack of 
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Comparison of the theoretical and experimental results 

The comparison of tensile strength as a function of twist obtained theoretically and by 
experiments were caried out for two-components spiral yarn (Figure 6), three-
components spiral yarn (Figure 7) and loop yarn with sinusoidal effect (Figure 8). All 
these three cases of fancy yarn were tested at steady and trapezoidal staple fibre 
distribution, as well as with the lack of migration and with full migration of fibres. 
Minimum average differences between theoretical results of strength generated by the 
models and results of experiments carried out, occurred in the case of an assumed 
trapezoidal distribution of the fibre length and full migration of fibers in the component 
yarns. The smallest differences occurred in the case of loop yarn. These results were not 
statistically significant on the basis of t-Student test with a 0.05 significance level. The 
highest differences occurred for the two-component plain yarn with the smallest value 
of twist of 100 t.p.m. A visual computer analysis of the structure of these yarns showed 
that the component yarns and staple fibers were placed at a very small angle to the 
longitudinal axis of final yarn (7 degrees). During the stretch process of final yarns, this 
angle decreased to zero, and in precesses proceeding the diameter of yarn decreased 
very quickly. The slipping process of fibers in the component yarns was a decisive 
factor of the final yarn destruction. The changes in relation to the single component yarn 
played a more important role than the changes in the structure of final plied yarn. An 
other case of destruction of the final yarn occurred in three-plied yarns with high twist, 
and more important were the phenomena in relation to the final plied yarn than the 
forces acting on the single component yarn. The influence of the type of distribution of 
staple fibre length on the strength of the final fancy yarns is higher as the influence of 
the type of fibre migration. The reduction of the strength of fancy loop yarns with the 
increase in the binding twist in opposite direction was stated. In this case the binding 
yarn brokes the first. In the case of two- and three- component yarns all component 
yarns broke at the same time.

Figure 6. Strength vs twist for two-compnent spiral yarn; with: steady fibre distribution 
(a, b); trapezoidum fibre distribution (c, d), lack fiber migration (a, d), full 
fiber migration (b, c). 
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Equations 15, 16, 17, 18, 19, 20, 21 and 22.

 Merle yarn: K=1,

 Spiral yarn: 

7

The coefficient of shape of fancy yarn 

In this work, the coefficient of shape of fancy yarn was introduced as a very essential 
parameter, which describes the type of fancy yarns and their mechanical properties. The 
coefficient of shape of fancy yarn is proposed as a ratio of the diameter of the external 
line of the core yarn helix to the diameter of the external line of the effect yarn helix: 

        (8) 

where: 0sRD  – the diameter of the external line of the core yarn helix, 0sED  – the 

diameter of the external line of the effect yarn helix, Ra  – the amplitude of the core 

yarn, Ea  – the amplitude of the effect yarn. If the coefficient of shape is smaller, the 
structure of the fancy yarn is more complex. 
In this way, we can divide the fancy yarns with continuous effects according to the 
value of the coefficient of shape: 

• Merle yarn: K=1, 

• Spiral yarn: 
0

0
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D
d

K = , where: 0Rd – diameter of the core yarn, 

• Loop yarn: 
0

0
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– for loop yarn with a sinusoidal effect 
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            – for loop yarn with a boucle effect, K is much smaller than 
0

0

sE

R

D
d

            – for loop yarn with a snarls effects, K is the smallest. 

Mathematical models of strength 

The strength of fancy yarn 

The strength of two-component yarn is determined by Equation (9)
where: 1S  and 2S – tension of the component yarns at the point of breaking, 1Tt , 2Tt
and pTt – linear densities of the component yarns and linear density of the final fancy 

yarn,
pe

e
∂
∂ 1  and 

pe
e

∂
∂ 2  – differential of elongation of the component yarns in the function 

of elongation of the final fancy yarn at the point of breaking, 0secα  and 0sec β  – 

secants of the angles of helix lines of the component yarns under the initial tension.
The strength of three-component yarn is determined by Equation (10).
The frictionforces occurring in the component yarn with consideration of the transverse 
forces acting from another component yarn in fancy yarn are described for different 
kinds of yarns by the set of Equations 11-18: 
Eq. 11 – two-component effect yarn
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, where: dR0 – di-

 ameter of the core yarn,

 Loop yarn: 

7

The coefficient of shape of fancy yarn 

In this work, the coefficient of shape of fancy yarn was introduced as a very essential 
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line of the core yarn helix to the diameter of the external line of the effect yarn helix: 
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a) b)Twist, turns/m Twist, turns/m

c) d)Twist, turns/m Twist, turns/m

Figure 6. Strength vs twist for two-compnent spiral yarn; with: steady fibre distribution 
(a, b); trapezoidum fibre distribution (c, d), lack of fiber migration (a, d), full fiber migration
(b, c);  Theoretical,  Experimental.

Figure 8. Loop yarns with a sinusoidal effect; with steady fibre distribution (a, b); with
trapezoidal fibre distribution (c, d); lack fiber migration (a, c); full fiber migration (b, d); 

 Theoretical,  Experimental.

a) b)Twist, turns/m Twist, turns/m

c) d)Twist, turns/m Twist, turns/m

 Mathematical models of 
strength

The strength of fancy yarn
The strength of two-component yarn is 
determined by Equation (9) 

where: S1 and S2 – tension of the compo-
nent yarns at the point of breaking, Tt1, 
Tt2 and Ttp – linear densities of the com-
ponent yarns and linear density of the fi-

nal fancy yarn, 
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ential of elongation of the component 
yarns in the function of elongation of the 
final fancy yarn at the point of breaking,
sec α0 and β0 – secants of the angles of 
helix lines of the component yarns under 
the initial tension. 

The strength of three-component yarn is 
determined by Equation (10). 

The frictionforces occurring in the com-
ponent yarn with consideration of the 
transverse forces acting from another 
component yarn in fancy yarn are de-
scribed for different kinds of yarns by the 
set of Equations 11-18.

Equation 11 – two-component effect yarn

(designations: μe – coefficient of friction
of fibres in the effect yarn, γfE – density 
of fibres in the effect yarn, ue – diameter 
of fibres in the effect yarn, FR – tension 
of the core yarn, eRr – relative change of 
diameter of the core yarn during the proc-
ess of elongation of fancy yarn, T0 – twist 
of plying under the initial tension).;

Equation 12 – two-component core yarn; 
Equation 13 – three-component effect 
yarn; Equation 14 – three-component 
core yarn; Equation 15 – three-component 
binding yarn; Equation 16 – loop effect 
yarn; Equation 17 – loop core yarn; Equa-
tion 18 – loop binding yarn.

The normal stress acting on compnent 
yarns
For steady distribution of fibres’ length
the normal stress acting on component 
yarns is described for steady distribution 
of lengthby by Equation (19), 
where: lh – length of slippage of staple fi-
bres in the component yarns, βwk – cos of 
the angle of the fibres in the component
yarns, Ttf k – linear density of the fibres
in the component yarns, Lf k – length of 
the fibres;

for trapezium distribution of fibres’
length, by Equation (20), 

Figure 7. Strength vs. twist for tree-component spiral yarn; with steady fibre distribution
(a, b), trapezoidal fibre distribution (c, d), lack fiber migration (b, d), full fiber migration
(a, c);  Theoretical,  Experimental.

a) b)Twist, turns/m Twist, turns/m

c) d)Twist, turns/m Twist, turns/m
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where: Fs – % of fibres of which the
length is smaller than lmin, lmax and lmin – 
maximum and minimum lengths of fibres
in the component yarn, and for normal 
distribution of fibres’ length by Equation
(21).

Partical derivative of elongation
The partial derivative of elongation of 
the component yarns versus the elonga-
tion of fancy yarn is described by Equa-
tion (22). 

 Comparison of the theoretical 
and experimental results

The comparison of tensile strength as a 
function of twist obtained theoretically 
and by experiments were caried out for 
two-components spiral yarn (Figure 6, 
see page 13), three-components spiral 
yarn (Figure 7) and loop yarn with sinu-
soidal effect (Figure 8). All these three 
cases of fancy yarn were tested at steady 
and trapezoidal staple fibre distribution,
as well as with the lack of migration and 
with full migration of fibres.

It should be emphasised that the majority 
of these graphs have a similar shape, and 
indicate only small differences between 
mathematical simulation and experimen-
tal results. An essential difference occurs 
only between loop yarn and the two- and 
three component yarns. The strength of 
loop yarn decreases when twist the in-
creases, whereas the strength of two- and 
three- component yarn increase with an 
increase in twist due to the same twist 
direction such in single component yarn. 
Contrary, the re-twisting process of loop 
yarn was carried out in the direction op-
posite to that in which the component 
yarns were twisted, according to the 
practice manufacturing of loop yarn on 
ring twisting machines. 

Minimum average differences between 
theoretical results of strength generated 
by the models and results of experi-
ments carried out, occurred in the case 
of an assumed trapezoidal distribution 
of the fibre length and full migration
of fibers in the component yarns. The
smallest differences occurred in the case 
of loop yarn. These results were not 
statistically significant on the basis of t-
Student test with a 0.05 significance lev-
el. The highest differences occurred for 
the two-component plain yarn with the 
smallest value of twist of 100 t.p.m. A 
visual computer analysis of the structure 

of these yarns showed that the compo-
nent yarns and staple fibers were placed
at a very small angle to the longitudinal 
axis of final yarn (7 degrees). During the
stretch process of final yarns, this angle
decreased to zero, and in precesses pro-
ceeding the diameter of yarn decreased 
very quickly. The slipping process of fib-
ers in the component yarns was a decisive 
factor of the final yarn destruction. The
changes in relation to the single compo-
nent yarn played a more important role 
than the changes in the structure of final
plied yarn. An other case of destruction 
of the final yarn occurred in three-plied
yarns with high twist, and more impor-
tant were the phenomena in relation to 
the final plied yarn than the forces acting
on the single component yarn. The influ-
ence of the type of distribution of staple 
fibre length on the strength of the final
fancy yarns is higher as the influence of
the type of fibre migration. The reduc-
tion of the strength of fancy loop yarns 
with the increase in the binding twist 
in opposite direction was stated. In this 
case the binding yarn brokes the first. In
the case of two- and three- component 
yarns all component yarns broke at the 
same time. 

 Conclusions
1. Mathematical models that include in 

the interaction the full migration of fi-
bres and the trapezium distribution of 
fibres’ length describe the real strength
of fancy yarns in the best way.

2. It was affirmed that the proper choice
of fibres’ length distribution is more
important than including the migra-
tion of fibres in a single-component
yarn.

3. It was affirmed that the stress of com-
ponent yarns, friction forces in the 
component yarns, coefficient of shape,
twist and linear densities of the com-
ponent yarns influence the strength of
fancy yarns in an essential way. 

4. The strength of loop yarn is decreased 
with an increase of the twist.

5. The coefficient of shape of fancy
yarns is a parameter that describes the 
type of fancy yarns with continuous 
effects.

6. The effectiveness of these models 
proved in the experimental way en-
sures the possibility of modelling the 
structure and phenomena occurring in 

elongated fancy yarns. This is a tool to 
aid the knowledge about fancy yarns.
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