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n Introduction
Reciprocally rotating shafts are quite 
common in textile machines such as 
looms [1], carding machines [2], and 
sewing machines [3]. The torsional 
vibrations of such systems have been 
investigated in work [4]. The resonance 
of flexural vibration has been studied in 
works [5]. In the case of rotating shafts, 
unstable behaviour arises when the 
angular velocity is equal to the circular 
frequency of natural vibrations [6]. This 
equality is the reason that the so-called 
critical unstable behaviour is often con-
fused with the resonance behaviour of 
flexural vibration. In fact both phenom-
ena are essentially different. This is quite 
clear in the case of the reciprocally rotat-
ing shaft, where critical speed is different 
from resonance frequencies. 

n Equations of motion
The system considered, shown in Fig-
ure 1, consists of the following elements: 
(I) an elastic shaft with unit length mass 
µ, (II) an attached inertia B, (III) a motor 
of inertia A and torque M and (IV) the 
mechanism transforming the rotary mo-
tion of element A to the rotary reciprocal 
motion of element B. This mechanism is 
not shown, and it may be either a cam or 
a linkage mechanism. Torsional vibra-
tions are not included in this study [4]. 
The equation of motion governing the 
flexural vibrations [5] of an oscillating 
shaft has the form (1). Here, α is the an-
gular coordinate of a shaft, EI denotes the 
shaft stiffness, χ  the damping coefficient, 
v and w are components of the transverse 
displacement of the shaft element, and v0 

and w0 are components of the shaft ecc-
entricity, while ξ is a coordinate along the 
axis shaft.

Let us denote an eigenfunction represent-
ing the shaft transverse deflection of the 

first mode of natural vibration by Ξ(ξ). 
Substituting expressions (2) into Equa-
tions (1) (see page 101), multiplying by 
the function Ξ and then integrating the 
resultant expression, we obtain a set of 
ordinary differential Equations (3), where 
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Figure 1. Accelerations of reciprocally rotating shaft driven by the motor torque M through  
mechanism (not shown) connecting elements A and B. 
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Equations 1, 4, and 5.
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m is reduced mass, k reduced stiffness, c 
the reduced damping coefficient, x and y 
are components of the reduced transverse 
displacement of the shaft element, x0 and 
y0 are components of the reduced shaft 
eccentricity, ω1 and ω2 are circular fre-
quencies of natural vibrations.

Ξ = Ξ(ξ) , v = xΞ, w = y Ξ       (2)

      

(3)

           (6)

Using the principle of virtual works (7) 
and relationships (3, 8, 9, 10, 11), we 
obtain equation (12) governing the rotary 
motion of the shaft. Here, Φ is an angular 
coordinate of the driving shaft, MA the 
torque acting on the driving shaft and MB 
the torque acting on the driven shaft. 

MAdΦ + MBdα = 0             (7)

             (8)

The driving torque M of the motor can be 
found from differential equation (13). In 
this equation T denotes the time constant 
of the motor, Cm the stiffness of the mo-
tor characteristic and Ω is the idle speed 
of the motor.

       (13)

n Resonance behaviour
The resonance behaviour of a recipro-
cally rotating shaft has been explained 
in work [5]. Using complex numbers for 
k1 = k2, Equations (3, 4) can be rewritten 
in a more convenient form (14.a) and for 
c = 0 a further simplified form may be 
found (14.b).

If the angle of shaft oscillation is given ex-
plicitly in time by the sine function, then 
equation (14.b) can be put into form (15).

From equation (15), it follows that: (I) 
resonance resulting from forces respon-
sible for angular acceleration takes place 
when the circular frequency of periodic 
motion is equal to that of natural vibration 
Ω = ω0, (II) resonance resulting from cen-
trifugal forces takes place when the circu-
lar frequency of periodic motion is equal 
to half that of natural vibration Ω = ω0/2.

n Critical behaviour
If the average value of the mass dis-
placement is large compared to the 

amplitude of vibrations, then the set of 
equations (3,4) may be simplified by re-
placing its terms with their average val-
ues (16). A large average displacement x 
may be expected when the denominator 
of quotient (17) approaches zero. This 
takes place when the average value of 
the second power of angular velocity 
dα/dt is close to the second power of the 
circular frequency of natural vibrations 

ω0 (18). Multiplying Equation (18) by 
mass displacement, this condition may 
be expressed in terms of centrifugal and 
restoring forces (19). Similar results 
can be obtained by considering the dis-
placement in direction y. Finally, from 
equation (18), the formula for calcu-
lating approximate value of critical of 
angular velocity dΦ/dt is found to have 
the form (20).

(9)

(10)

(11)

(12)

Equations 9, 10, 11, 12, 14a, 14b, 15, 16, 17, 18, 19, and 20.
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(14b)
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(16)
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n Numerical results 
and discussion

Taking the dependence between the mo-
tion of driving and driven shaft of the 
form (21)

   α(Φ) = α0/2 sin(Φ)          (21)

the set of non-linear Equations (3, 4, 12, 
13) was solved numerically using the 
Runge-Kutta method, taking the time 
step ∆t = 2π/max(ω1,ω2,Ω)/18000 and 
changing the idle speed Ω of the mo-
tor with a step ∆Ω = Ωcr/2500 at every 
100∆t. The initial conditions were taken 
as: t = 0, x = y = 0, dx/dt = dy/dt = 0, 
Φ = 0, dΦ/dt = 0, M = 0. The results 
for α0 = π/4,  A = 10, B = 0.01, m = 10, 
x0 = 0.01, y0 = 0, Cm = 10, T = 1/Ωcr, 
Ωcr = min(ω1,ω2)/(α0/80.5) are shown in 
Figures 2 - 4.

From Figures 2 - 4 it may be seen that the 
increase in Ω causes the increase of the 
angular velocity dΦ/dt until it passes the 
critical value Ωcr. Further increase of Ω 
is not followed by the increase of the ve-
locity, but it results in the unstable behav-
iour of the system. It should be noted that 
this behaviour requires internal damping 
to be present in a system [6, 7]. 
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Figure 4. The average angular velocity dΦ/dt of a driving shaft as a function of increasing the 
idle speed of the motor Ω for ω1=500π/3, ω2=100π/3, c1/(mk1)0.5=0.1, c2/(mk2)0.5=0.1.

Figure 3. The average angular velocity dΦ/dt of a driving shaft as a function of increasing the 
idle speed of the motor Ω for ω1=100π/3, ω2=500π/3, c1/(mk1)0.5=0.1, c2/(mk2)0.5=0.1.

Figure 2. The average angular velocity dΦ/dt of a driving shaft as a function of increasing 
the idle speed of the motor Ω for ω1=ω2=100π/3, c1/(mk1)0.5=c2/(mk2)0.5=10.
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