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n Introduction 
The broad application of nonwoven 
products has influenced the develop-
ment of manufacturing techniques for 
this textile branch. The nonwoven textile 
manufacturing branch has generated not 
only new production methods, but also 
new, hitherto unknown, machines for 
production and has also influenced the 
development of new modifications of 
traditional machines. Needle-punching 
machines belong to these latter construc-
tions. They have grown to be more and 
more complex with high-quality working 
parameters, but also with great sensitivity 
to faults during exploitation.

The recognition of the dynamic proper-
ties of needle-punching machines is 
a difficult task. The complex driving 
unit is the cause of this difficulty. This 
unit includes an asynchronous motor, a 
belt transmission, toothed gears, and a 
crank-slider mechanism connected to the 
needle-bench.

Thus, in the case of needle-punching 
machines, it seems most advantageous 
to carry out simulation tests with the use 
of a mathematical model of the needle-
punching machine which is able to de-
scribe the whole electromagnetic system. 
This system must take into consideration 
the dynamics of the asynchronous motor 
and the mutual interactions of the me-
chanical and electrical parts, and must 
also determine the effects of changes 
- consciously introduced into the system 
- to the construction parameters of both 
the above-mentioned parts.

n The Physical Model 
A physical model of a real driving sys-
tem is based on the structural scheme 
of the needle-bench driving unit. The 
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idealised physical model accepted by us 
and presented in Figure 1 is a discrete 
model.

Only a comparison of the results of 
analytical analysis with the experimental 
data can prove whether the real system 
units accepted during modelling can be 

idealised. In the physical model accepted, 
system elements such as toothed wheels, 
shafts, vee-belts, etc., are modelled as 
elasto-dissipative elements. Some prop-
erties of the kinematic chain links, such 
as the coefficient of elasticity k and the 
dumping coefficient c, are marked at the 
related elements in Figure 1.

Figure 1. Structural scheme of the needle-bench driving unit: 1 - motor, 2 - belt transmission, 
3 - toothed gear, 4 - clutch, 5 - main shaft, 6 - crank-slider mechanism, 7 - slider, 8 - needling 
bench, 9 - lever; A, B, C, D - nodes, J0 - mass moment of inertia of the belt wheel, J1 ... 
J4 - mass moments of inertia, c - shaft dumping coefficient, c2 - dumping coefficient, K1 
- shaft rigidity of the toothed gear, K2 - shaft rigidity, S - belt rigidity, D - belt dumping 
coefficient, r - crank radius, rS - radius of the motor belt-wheel, r1 - radius of the belt wheel 
(belt transmission), R - radius of the toothed wheel, l - length of the connector rod, ψ1 ... ψ3 
- rotation angles of the wheels, ϕ1 ... ϕ4 - mass rotation angles.
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Modelling the dissipative properties of 
the particular elements is one of the most 
complex tasks. This is caused by the lack 
of accurate mathematical descriptions of 
dissipative phenomena. The non-linear 
character of the dissipative forces, for 
example those of mixed friction, which 
can appear in the sliders guiding the 
needle bench, significantly influences the 
dynamic system properties.

The majority of the needle-punching 
machines  used today have a crank-slider 
driving unit. Such mechanisms have been 
analysed in detail in work [1], as well as 
in further works which are related mainly 
to the crank mechanisms of combustion 
engines. The publications [2-5] include 
analyses of the dynamics of mechanisms 
in which the torsion oscillations are in-
duced as the result of the reciprocating 
movements of the working elements. The 
author’s own works [6-10] consider the 
dynamics of the needle-punching ma-
chine’s driving unit, and include analyses 
of the occurring phenomena with consid-
eration of the technological resistance.

The driving unit system shown in Fig-
ure 1, which has been accepted for the 
analysis presented, was developed as the 
result of systems discussed earlier. The 
d’Alembert principle of virtual works 
was used to describe the system’s ki-
netics. This method offers a number of 
advantages, especially for designers and 
operating staff.Principally, it enables the 
determination of forces which are the 
basis for strength calculations of system 
elements, including calculation of bear-
ings.

 Force Distribution in the 
Crank-slider System 

The force distribution in the crank-slider 
system is presented in Figure 2. Taking 
into account the system’s symmetry, it 
is sufficient to consider only the forces 
acting on one of both the crank-sliders’ 
mechanisms. From the OHG triangle 
(Figure 2) we have:

hence: 

and 

       (1)

From the equilibrium of the G node we 
have:

        (2)

where: 
                       (3)

The axial forces which are acting in the 
G node equal:

    (4)

The force Pt≠0, only for the range of 
310° ≤ τ ≤ 360°.

The friction force Ti of the slider can only 
be estimated. Theoretically, considering 
the system’s symmetry, the force should 
equal zero; but in reality it is dependent 
on the accuracy of manufacturing the 
crank, the cross-bar, and the connector 
rod, as well as on the influence of the 
bench’s inertia forces, and the forces of 
the collected nonwoven’s interaction on 
the slider. A constant value of Ti can be 
accepted for calculation. The sense of 
friction force Ti is opposite to the veloc-
ity  and compatible with -sgn( ). This 
sense changes twice during one crank 
revolution.

As the result of continuously receiving 
the nonwoven, the formation of nonwo-
ven tension is generated during the whole 
time that the needles are in contact with 
the nonwoven. The nonwoven is stopped 
in the needling area, whereas the take-up 
rollers cause the continuous movement of 
the jammed end. The horizontal force Ph 
generated by the tension, which increases 
as the needles sink (a continuous increase 
in tension occurs), is transmitted by the 
needles and by the friction of the nonwo-
ven to the perforated plate. A part of the 
fleece fibres is pressed into the openings 
of the perforated plate, which increases 
the participation of the bottom perforated 
plate in the transmission of horizontal 
technological forces. The moment of 
friction on the bolt fastening the connec-
tor with the cross-bar is formulated by:

               (5)

where:
Miop  - the moment of friction on the bolt 

fastening the connector with the 
cross-bar (point G),

µ  - the coefficient of friction, and
dl  - the bolt diameter.

 Values of the Moments          
of Friction Mi

All the elements of the driving shaft, i.e. 
all the elements mounted to the shaft, 
whose rotational axes are compatible 
with the shaft axis, are dynamically ba-
lanced in their reciprocating motion. The 
elements with mass centres concentrated 
at the crank journal axis (at the eccentric) 
generate the formation of centrifugal 
inertia forces 

∆C=m0rω2 
and are balanced by the main counter-
weights.

The inertia resistances of the masses in 
linear motion acting along the way of the 
slider can be designated as axial inertia 
resistances, in contrast to the centrifugal 
forces. Independently of the inertia re-
sistances, other axial forces exist, such as 
the force of slider friction and the techno-
logical impulse forces acting over time as 
the needles pierce the fleece.

It is impossible to obtain the total mass 
balance in linear reciprocating motion in 
the needle-bench driving unit using the 
main counterweights, as the resistances 
in linear motion have a constant direction 
but a variable absolute value, whereas 
the centrifugal forces have a constant 

Figure 2. Distribution of forces acting in 
the crank-slider mechanism: Fi(t) - inertial 
force of masses connected with the needle 
bench, K - interaction force of connector rod 
acting on the cross-bar, ∆Co - centrifugal 
inertia force, N1 and N2 - normal forces, 
T1 and T2 - friction forces, Pt - force of 
technological resistance, Ph - nonwoven 
tension force, Wi - resultant force, Mop - 
bolt moment of friction, r - crank radius, l 
- length of connector rod, Ti - resistance force 
of slider friction, µ - coefficient of friction, 
ϕ - crank rotation angle, ψ - angle of the 
resultant force position h - distance between 
the brushes.
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absolute value but a variable direction. 
However, the possibility exists of a par-
tial force balance in linear motion by the 
main counterweights.

A decrease (moderation) in the mass 
inertia resistances in linear motion can 
be achieved by an increase in the main 
counterweights, i.e. by an increase in the 
negative value of the eccentric’s static 
moment over the value which balances 
the mass inertia resistances in the rota-
tional movement of the main shaft. The 
distribution of forces acting on the main 
bearing is presented in Figure 2. It should 
be emphasised that the resultant force Wi 
rotates in the opposite direction to that of 
the crank rotation.

The resistance moments of friction in the 
main bearing can be determined by the 
approximate dependency:

      i = 1, ... ,4    (6)

where: 
Wi - the rotating resultant force acting 

on the main bearing which consid-
ers the masses in the reciprocating 
motion and the balancing mass; the 
resultant force can be described by 
equation (7), where:

m  - part of the mass of the needle-bench 
(1/4 part of the total mass),

β  - the mass balancing coefficient in the 
reciprocating motion,

µ  - the coefficient of friction, and
d  - the diameter of the main shaft jour-

nal.

 Mathematical Model of the 
System Presented in Figure 1 

The mathematical model of the needle 
bench driving unit is described by the sets 
of equations describing the action of the 
asynchronous motor (equations 8-10), the 
crank-slider system (equations 11-16), the 
take-up belt wheel (equation 17), and both 
toothed wheels (equations 18-23). The set 
of equations (8) which describes the asyn-
chronous motor was accepted in accord-
ance with [11] and formulations described 
by the Matlab program software. In these 
equations, Usα and Usβ are the phase-to 
phase voltages, Ls, Lw, and Lm the induc-
tivities correspondingly of stator, rotor, 
and mutual rotor-stator, Rs and Rw the 
resistivities of stator and rotor, and p - the 
number of pole pairs; Mts are the constant 
internal motor resistances, such as for ex-
ample those resulting from ventilation and 
friction in the motor bearings, whereas M0 
is the anti-torque at the motor belt wheel 

formulated by equations (9) and (10),
where:
F  - the effective belt tension,
S  - the belt rigidity coefficient,
D  - the belt dumping coefficient,
ϕs  - the rotation angle of the motor’s 

rotor,
rs  - the radius of the motor belt wheel,
ψ  - the rotation angle of the driven belt 

wheel, and
rl  - the radius of the driven belt wheel.

The kinematic relations of the crank-slid-
er system are formulated by equations 
(11-16), where ϕi is the rotation angle 
of the i-th crank. The dependencies for 
the take-up belt wheel are described by 
equation (17), where:
Kl  - the coefficient of the transmis-

sion shaft’s rigidity,
Cl  - the coefficient of internal dump-

ing,
ψ1, ψ2 - angles of rotation of the belt and 

toothed wheels, and
I0  - the belt wheel’s mass moment 

of inertia.

The motion equation of the first toothed 
wheel of the gear is formulated by the 
dependency (18), where:
Ik  - the mass moment of inertia of 

the toothed wheel,
Km  - the tooth rigidity,
Cm  - the dumping coefficient,
R  - the toothed wheel radius, 
Ml  - the total moment in node A, 

described by equation (19), 
where:

I1   - the mass moment of inertia of the 
elements fastened in node Al,

Mtl  - the moment of friction in the 
journal bearing,

M2  - the total moment in node B, 
described by equation (20), 
where:

I2  - the mass moment of inertia of the 
elements fastened in node B,

Mt2  - the moment of friction in the 
journal bearing.

The motion equation of the second 
toothed wheel of the gear is formulated 
by the dependency (21), whereas the to-
tal moment M3 in node C is described by 
equation (22), where:
I3   - the mass moment of inertia of the 

elements fastened in node C,
Mt3  - the moment of friction in the jour-

nal bearing,
and the total moment M4 in node D by 
equation (23), where:
I4  - the mass moment of inertia of the 

elements fastened in node D.

d’Alembert’s principle of prepared 
works, posited individually for each 
separated crank-slider (eccentric) mecha-
nism, and after taking into account the 
friction resistances considered as exter-
nal forces, takes the following form:

 

i = 1, ... ,4                    (24)

where:
Mi  - the total momentum in the 

i-th node,
Fi(t)  - the axial longitudinal force 

in the i-th node,
dϕi,dyi,dγi - the displacements prepared. 

After differentiating the formula (24) 
with respect to ϕi, we obtain the set of 
relations (25-28).

 Results of Numerical 
Calculation 

The mathematical model of the dynamics 
of the needle-punching machine’s driv-
ing unit, as formulated by the equations 
(5-28), has been graphically defined by 
the Simulink software. A multiple re-
peated simulation enables the selection 
of optimal parameters in a real system.

Some coefficients of the mathematical 
model have been determined during 
investigation of a simple driving unit. 
The remaining coefficients, which had 
been connected with the evolution of the 
system developed, have been determined 
from catalogue data, calculated, or based 
on different measurements.

An example of a simulation analysis 
of the dynamics of a needle-punching 
machine’s driving unit has been carried 
out on a real IN2 machine. This ma-
chine was developed by and designed 
under the supervision of the author, 
and then manufactured by the Befama 
Machine Manufacturing Enterprise 
(Bielsko-Bialska Fabryka Maszyn) in 
co-operation with the Cenaro Research 
and Development Centre for Textile 
Machines, Łódź, Poland. The results 
presented in Figures 3–11 were obtained 
with the following parameters measured 
directly from the real object, and se-
lected for computing: r=0.03m, l=0.27m, 
rs=0.112m, r1=0.1575m, Is=0.167 kgm2, 
m=13.665 kg, d=0.085m, d1=0.048m, 
β=0.5, R=0.17m, Cm=7×103 Ns/m, 
km=8.5×108 N/m, λ=0.111, Ls=0.004 H, 
Lw=0.230 H, Lm=0.226 H, D=200 Ns/m, 
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Equations 7-23. 

Equations 25-28. 

S=321,000 N/mrad, I1=0.4326 kgm2, 
I2=0.4205 kgm2, I3=0.4326 kgm2, 
I4=0.4205 kgm2, µ1=0.04, µ=0.05, 
Mts=6.63 Nm, U=380 V, f=24 Hz, 
A=536.315 H-2, p=1, Rs=0.249 Ω, 
Rw=0.260 Ω, ω=150.78 s-1, C=8 Nms/rad, 
k=10.89⋅104 Nm/rad.

The quantitative relations presented were 
selected while considering these param-
eters, which are essential for the designer 
and the exploitation staff.

 Conclusions 
§ The mathematical model of the nee-

dle-bench driving unit comprises the 
dynamics of all the elements applied 
in modern needle punching machines 
with crank-slider drives, and is there-
fore a universal model for this class of 
needle-punching machines.
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Figure 3. Electromagnetic momentum of the motor, start-up run. Figure 4. Electromagnetic momentum of the motor, stationary state.

Figure 5. Mechanical power of the motor, stationary state. Figure 6. Rotational velocity of the motor, start-up run.
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Figure 7. Linear acceleration, stationary state. Figure 8. Shift twist angle I, start-up run

§ The mathematical model can be de-
veloped by the addition of successive 
needling modules, and in this way 
a model of a machine with optional 
width can be formed.

§ The simulation model allows us to in-
vestigate a broad range of the model’s 
parameter changes.
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