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n Introduction 
Fibre-reinforced composites are modern 
construction materials from which prod-
ucts used in many areas of technical ap-
plications are made. These materials are 
characterised by very good mechanical 
properties. They are ideal for structural 
applications where high strength and 
stiffness are required. The mechanical 
properties of the composite are not only 
defined by the properties of reinforcing 
fibres and their percentage participation 
in this material; the full advantages of 
such materials are obtained when the 
fibres are optimally distributed and ori-
ented in each layer, with respect to the 
assumed objective behavioural measure 
in the optimisation process under the 
structure’s actual loading conditions. 

The optimal design of a structure made 
of a composite material, particularly re-
garding the shape and orientation of the 
reinforcing fibres, has been the subject 
of many scientific papers, including in 
[1-6]. Different methods of solving the 
optimisation problem were presented, 
but most of them were based on the gra-
dient-oriented search algorithm. 

The other approach, based on imitation 
of the evolution processes proceeding 
in nature, has also been used in the op-
timisation of structural components for 
many years. This method is known as 
the genetic algorithm. Its use has found 
growing interest in engineering design 
problems. The genetic algorithm is a 
simple, powerful and effective tool used 
for finding the best solution in a compli-
cated space of design parameters. This 
algorithm is very different from tradi-
tional optimisation methods. The genetic 
algorithm only needs the information 

based on the objective function, which is 
its main advantage in comparison with 
methods based on information gained 
from objective function derivatives. In 
contrast to gradient methods, which often 
fall into a local optimum, this algorithm 
always finds the global optimum. Thus, 
the genetic algorithm can serve as an 
alternative method to classic methods 
based on mathematical programming. It 
can be used in many fields where the op-
timisation process is necessary, particu-
larly in the optimal design of a structure 
made of a fibre-reinforced multilayer 
composite.

n Model of Fibre-Reinforced 
Multilayer Composite 

Optimisation is an essential process 
when designing a structural component 
in engineering practice. First of all, 
before this process, a physical and math-
ematical model of structure is built. This 
model is a starting point to formulating 
the optimisation problem.

In the paper, the problem of optimal de-
sign of reinforcing fibres in a composite 
material is considered using the simple 
model presented, for instance, in [7]. The 
purpose of the modelling process is to de-
termine the extensional stiffness matrix 
for the multilayer composite (Figure 1), 
and to express its components in terms of 
design parameters and engineering con-
stants of fibre and matrix materials.

The modelling process of the multilayer 
composite is based on the following as-
sumptions [7]:
§ The composite is a laminate made 

of a stack of permanently combined 
layers. The joint surfaces are infini-

tesimally thin, and they do not permit 
interlayer shearing.

§ The layers are symmetric in geometry 
and material properties about the mid-
dle plane of the composite.

§ The multilayer composite is a homo-
geneous material on a macroscale 
level, but its properties depend in turn 
on the properties of the layers.

§ Each layer is a lamina made of a 
matrix reinforced with a ply of uni-
directional fibres, and has a thickness 
hk (the lamina thickness is very small 
compared to its length and width). 
The bonds between fibres and matrix 
are perfect.

§ The lamina is macroscopically ho-
mogeneous, orthotropic and linearly 
elastic.

§ The reinforcing fibres are homogene-
ous, isotropic, linearly elastic, regular-
ly spaced and perfectly aligned in each 
layer. Young’s modulus and Poisson’s 
ratio of the fibre in the k-th layer of 
the composite are denoted by Ewk and 
vwk, respectively. The fibre density for 
each particular layer (volume of the 
fibres in the k-th layer / total volume 
of the k-th layer) is denoted by ρwk.

§ The matrix is homogeneous, isotropic 
and linearly elastic. Young’s modulus 
and Poisson’s ratio of the matrix in 
the k-th layer of the composite are 
denoted by Emk and vmk , respectively, 
and its density ρmk=1-ρwk.

The extensional stiffness matrix for the 
homogeneous model of the multilayer 
composite 
In conformity with the above assump-
tions, each particular layer of the com-
posite is treated on a macroscale level 
as a plane, homogeneous and orthotropic 
material (Figure 1a). Using the rule of 
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mixtures, the engineering constants of 
the k-th layer can be expressed in terms 
of the mechanical properties of the fibres 
and the matrix, and in terms of fibre den-
sity for this layer. They have the follow-
ing form [7]:

       (1)

The notations E1k and E2k are the appar-
ent Young’s moduli in the fibre direction 
and in the direction transverse to the 
fibres, respectively, while v12k is the so-
called major Poisson’s ratio, and G12k 
denotes the in-plane shear modulus in the 
k-th layer of the composite. 

For an orthotropic material in co-ordi-
nates aligned with principal material 
axes 1-2, coinciding with the fibre di-
rection and the direction perpendicular 
to the fibre, the strain-stress relations in 
terms of the engineering constants are 
defined thus:

   
(2)

where ε1, ε2, γ12 and σ1, σ2, τ12 are strain 
and stress components with respect to 
these axes, respectively. 

On the other hand, the stress-strain rela-
tions for an orthotropic layer are given by:

   (3)  

where Ck denotes the stiffness matrix 
for the k-th layer of the composite with 
respect to the material axes 1-2. This 
matrix is obtained by inversion of the 
compliance matrix appearing in equa-
tions (2). Thus, the nonzero components 
of Ck take the form of equation 4, and are 
explicitly expressed in terms of the engi-
neering constants for the k-th layer of the 
composite material. 

         

 (4)

The stresses and strains appearing in equa-
tions (2) and (3) were defined in the prin-
cipal material directions for an orthotropic 
material. However, a composite material 
is often constructed in such a manner that 
its principal material directions do not 
coincide with a co-ordinate system that 
is geometrically natural to the solution of 
the problem. In this case, the stress-strain 
relations for an orthotropic lamina in the 
global coordinate system are:
                     

(5)
  

whereCk denotes the stiffness matrix for 
the k-th layer of the composite with re-
spect to the global reference system x-y, 
while σx, σy,, τxy and εx, εy, γxy are stress 
and strain components with respect to the 
axes of this system, respectively. 

Denoting by θk the angle between the 
fibre ply direction at a given point of the 
k-th layer and the x-axis of the global 
co-ordinate system (Figure 1a), the com-
ponents of Ck which are given by [7] are 
presented in equation (6) and follow from 
the transformation rule associated with the 
rotation of the co-ordinate system. 

As shown in Figure 1, the fibre-reinforced 
multilayer composite is modelled by a 
homogeneous and orthotropic material. 
Using the classical lamination theory [7] 
for such a defined model, the generalised 
plane stress and strain fields are interre-
lated by Hooke’s law of the form:

         (7)

where D denotes the extensional stiffness 
matrix for the model of the multilayer 
composite. The components of this ma-
trix are expressed by:

         (8)

where the coefficientsCijk follow from 
equation (6), and the summation is ex-
panded over all layers of the composite 
material. 

a) b)

Figure 1. Fibre reinforced multilayer composite; a) the real composite, b) the model of the 
composite. 

Equation 6

the matrix (Emk; vmk)

the fibre (Ewk; vwk; ρwk)

the middle plane
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In addition to the model of the fibre-re-
inforced multilayer composite presented 
above, more complicated and more accu-
rate models of a laminate exist. However, 
the generalised stiffness matrix for these 
models depends on the same parameters 
as the model presented here.

Design parameters of the fibre-rein-
forced multilayer composite
The extensional stiffness matrix D, de-
fined by equation (8), depends on the 
mechanical properties of the reinforcing 
fibres and the matrix, the fibre density and 
orientation in each particular layer of the 
composite, as well as the number of layers 
and their thickness. Thus, the components 
of this matrix can be written in the form:

   
(9)

and they are expressed in terms of the 
design parameters introduced for the 
fibre-reinforced multilayer composite. 
Each of these parameters influences the 
mechanical properties of a composite 
material. However, the full advantages of 
such materials are obtained when the fi-
bres are optimally layouted and oriented 
in each layer with respect to the assumed 
objective behavioural measure in the op-
timisation process under the structure’s 
actual loading conditions. Therefore, in 
this paper’s analysis, an angle of fibre 
orientation θik at any point of each k-th 
layer is selected as the design parameter 
which should be determined in the opti-
misation process.

The angle of fibre orientation θik at any 
point of the k-th layer defines the shape of 
the reinforcing fibres in the composite ma-
terial (Figure 2). These design parameters 
can be constant in each layer (the fibres are 
rectilinearly spaced in the matrix), or can 
vary through the layer domain (the fibres 
are placed curvilinearly in the matrix). In 
this second case, the fibre orientation θik 
is treated as an angle between the tangent 
to the fibre and x-axis at any point of the 
k-th layer, and can vary within the layer 
domain. To describe the shape of reinforc-

ing fibres a polynomial, Bezier or B-spline 
representation is introduced in the present 
paper, and the parameters defining this 
particular representation can be treated as 
design parameters.

n Mean Stiffness Design           
of Composite Structure 

The problem of optimal design of fibre 
shape and orientation in a multilayer 
composite will be dealt with while as-
suming the maximum mean stiffness of 
composite structure subjected to service 
loading.

Let us now consider a thin two-dimen-
sional structure made of the composite 
material (Figure 3). This structure has a 
uniform thickness t; it is supported on 
the boundary portion SU and loaded by 
traction  acting along the 
boundary portion ST. 

Under the applied loading, the structure 
undergoes some deformations described 
by displacement field u = [ux, uy]T.

The generalised plane stress 
σ = [σx,σx,τxy]T

and strain 
ε = [εx,εx,γxy]T

fields, induced in the deformed structure, 
are interrelated by equation (7) with the 
extensional stiffness matrix D defined by 
equation (8). 

Thus, the behaviour of structure is de-
scribed by the equilibrium equation and 
kinematic equation:

(10)

supplemented with the boundary condi-
tions specified as follows:

(11)

where n denotes the unit-normal vector
 on the external boundary S. 

The mean stiffness design is developed 
by using energy approaches [8]. The total 
potential energy ΠU of the structure is 
defined as the sum of total strain energy 
and work done by external load, and can 
be written in the form:

  
(12)

Using the boundary conditions appearing 
in (11) and equation (10), we can write 
the following equality:

   (13)

Finally, using equality (13) in equation 
(12) we obtain:

       (14)

and then the problem of mean stiffness 
design for a composite structure can be 
formulated as follows:

       (15)

with respect to the shape or orientation 
parameters of the reinforcing fibres in its 
particular layers.

n Optimisation of the Composite 
Structure using the Genetic 
Algorithm 

The optimisation problem discussed 
in previous sections will be performed 
with the aid of the genetic algorithm. It 
is different from traditional optimisation 
techniques used in engineering design 
problems. The main idea behind this ap-
proach is to use the power of evolution to 
solve the optimisation problem. 

A brief introduction to the genetic algo-
rithm method is discussed in this section. 
First, the problem is re-defined in order to 
allow the use of the genetic optimisation. 
The steps of the genetic algorithm are out-
lined by presenting all its operators. 

Problem formulation
The optimal design of the shape and 
orientation of reinforcing fibres in a mul-

Figure 2. Fibre orientation at any point of 
a layer.

Figure 3. Two-dimensional composite 
structure subjected to service loading.



FIBRES & TEXTILES in Eastern Europe   July / October 2004, Vol. 12, No.  3 (47)60 61FIBRES & TEXTILES in Eastern Europe     July / October 2004, Vol. 12, No.  3 (47)

tilayer composite is considered, so that 
structure made of this material should be 
as stiff as possible. Thus, the optimisation 
problem can be written in the following 
form:

   
(16)

The potential energy ΠU is selected as the 
objective function in this process, since 
the genetic algorithms only solve the 
maximisation problem. Thus, the mini-
misation of the work potential is replaced 
by the maximisation of potential energy. 
The objective function ΠU is expressed by 
(12), where the stiffness matrix D has the 
form (9). The maximum mean stiffness of 
a composite material is considered with 
respect to the set of the variable vector 

 , whose components are 
angles of fibre orientation or the param-
eters defining these angles. Each variable 
θik defines the layout of the so-called di-
rectional fibre at any point in the k-th layer 
of a composite structure, and it is treated 
as a design parameter. Their optimal value 
will be derived during the optimisation 
procedure. 

Basis of the genetic algorithm
The simple genetic algorithm will be ap-
plied in the optimisation process. Its block 
diagram is shown in Figure 4. The detailed 
description of such an algorithm is given, 
for instance, in [9,10].

At first, in order to solve the optimisation 
problem formulated above, each design 
parameter θik is coded in a binary string. 
For instance, for the m independent angles 
of fibre orientation defining the layout 
of reinforcing fibres in all layers of a 
composite structure, the variable vector 

 is represented as fol-
lows:

   (17)

Each variable θi is coded in li bits. The 
length of the string li for the i-th angle 
of fibre orientation can be determined by 
the following relationship:

           (18)

where li is the smallest integer represent-
ing the solution of this inequality. The no-
tation dok is used for the desired accuracy 
of the solution to the given problem, while 
θi(min) and θi(max) denote the variable 
bounds for the i-th design parameter θi. 

Thus, a complete string (also referred to 
as a chromosome), which represents all 
design parameters, has a length l and is 
given by:

                        (19)   

where m is the number of design param-
eters in the optimisation problem under 
consideration.

An initial population of N chromosomes 
is created in order to start the genetic 
simulation. Each chromosome in this 
population represents a point in space 
of the design parameters, and describes 
a possible solution to the given problem. 
All strings are created randomly, which 
thus guarantees a very great population 
diversity.

Thereafter, all chromosomes in the cur-
rent population are evaluated by means 
of the values of the objective function. 
Each string is decoded using the equation 
(20), and then the potential energy ΠU 
for the decoded values of fibre orienta-
tion θi is calculated in this step of the 
genetic algorithm:

 (21)

Thus, a fitness value v(chj) is assigned 
to each chromosome in population. This 
value is related to the value of an objec-

tive function for the decoded string of 
design parameters.

The population is operated by three main 
operators of the genetic algorithms. They 
are selection, crossover and mutation. 

Selection is mainly responsible for the 
search aspect of genetic algorithms. The 
essential idea in this operator is that ‘good’ 
strings are picked from the current popula-
tion and multiple copies of them are creat-
ed. As a result of this process, ‘bad’ strings 
are eliminated from the population and do 
not undergo any further consideration. 

Each chromosome in the current popula-
tion is selected with a probability propor-
tional to the chromosome’s fitness value 
v(chj). The probability pj for selecting the 
j-th chromosome to the new population 
is given by:

                     (22)

The crossover operator randomly re-
combines chosen two chromosomes by 
exchanging some portion of the strings 
between them, as shown for instance in 
the following scheme:

              (23)

The crossover point is performed random-
ly. It is intuitive from this approach that 
good chromosomes from either parent are 
combined to form a better child chromo-
some. However, in order to preserve some 
good strings, not all strings in the current 
population are used in the crossover. This 
operation is carried out with a crossover 
probability pc. Besides, only (1-pc)100% 
of the population are put into the new 
population. 

Mutation introduces random modifica-
tions to create a better chromosome in the 
population.

              (24)

As shown in equation (23), this operator 
alters a string locally and changes a 1 to a 0 
or vice versa with a very small mutation 
probability pm. Mutation is necessary to 
maintain diversity in the population. 

Figure 4. Block diagram of the simple 
genetic algorithm. Equation 20.
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Finally, the new population of solutions 
is created; then, the single cycle of the 
genetic algorithm, which is known as a 
generation in genetics terminology, draws 
to an end. This new population is again 
operated by the above three operators and 
evaluated. Each successive generation 
contains better ‘partial solutions’ than pre-
vious generations, and converges towards 
the global (or near global) optimum. This 
procedure is continued until the termina-
tion criterion is satisfied. Usually, a genetic 
simulation is terminated when a specified 
number of generations have elapsed.

n Illustrative Example
A simple example will be discussed in this 
section in order to show the applicability 
of genetic simulation for optimal shape 
design of reinforcing fibres in a composite 
structure. Let us consider the structural 
component shown in Figure 5.

This structural component is made of a 
3-layer composite material. Each layer 
of the composite consists of epoxy matrix 
(Em=3.103 [MPa], νm=0.4) reinforced 
with a ply of glass fibres (Ew=7.104 
[MPa], νw=0.25) and has the thickness 
hk=0.005 [m]. The fibres are regularly 
spaced in the matrix, with a constant den-
sity ρw=0.5 in each particular layer. 

The problem deals with the optimal 
layout of reinforcing fibres in the multi-
layer composite in the case of the mean 
stiffness design of the structure made of 
this material. This design problem was 
explicitly formulated in Section 4.1, and 
will be discussed here for three classes of 
fibre shape. 

In the first case, each layer in the compos-
ite material of the structural component 
will be reinforced with one family of 
straight fibres. Thus, the angle of fibre 
orientation θ1 in the middle layer and the 
angle of fibre orientation θ2 in the outer 
layers are treated as design parameters 
which should be determined in the genetic 
optimisation process (see the section ‘Ba-
sis of the genetic algorithm’). 

This process was carried out with the fol-
lowing parameters:
§ the lower and upper bounds for design 

parameters θ1 and θ2 are 0° and 180°, 
respectively; 

§ the population size N=100; 
§ the crossover probability pc=0.9; 
§ the mutation probability pm=0.005; 
§ the number of generations n=300. 

The objective function ΠU for the de-
coded values of fibre orientation θi was 

calculated using the finite element method 
[11] in the analysis step of the population 
evaluation. In this approach to the analysis 
of the mechanical system, the considered 
structural component defining a continu-
um is discretised into 48 four-node quadri-
lateral elements. The history of the genetic 
simulation is presented in Figure 6.

We can observe from this figure that the 
genetic algorithm reached the optimal 
solution after 104 generations. Thus, 
the calculated optimal values of design 
parameters θ1 and θ2 are 140.78° and 
110.09° respectively with respect to the 
x-axis (θ=0°). This design corresponds 
to the maximum stiffness of the structural 
component in the assumed class of shape 
for reinforcing fibres. The fibre layout in 
the particular layers of the composite ma-
terial after the optimisation process with 
one family of straight fibres is shown in 
Figure 7.

This case was next verified using the 
gradient-oriented search method; the plot 
of work potential WP versus the angles of 
fibre orientation θ1 and θ2 in particular 
layers is presented in Figure 8.

We can observe from Figure 8 that the 
maximum stiffness for the structural com-
ponent made of the composite material 
is obtained when the angles of orienta-
tion for straight reinforcing fibres are 
θ1=141° in the middle layer and θ2=110° 
in the outer layers. In addition, it is easy 
to verify that these optimal values corre-
spond to the increase in the construction 
stiffness by 75.3% in comparison to the 
design with fibre orientation θ1=45° and 
θ2=45° respectively in the particular lay-
ers, for which this structural component 
will be the most deformable. 

The case of the reinforcing fibres consti-
tuting an open polygon is considered next. 
For this case, the fibre layout is defined 

by 5 independent design parameters: the 
angles of orientation θ1, θ2, θ3 in the mid-
dle layer (three families of straight fibres), 
and θ4, θ5 in the outer layers (two families 
of straight fibres). 

The optimal values of the design parame-
ters after the optimisation process finishes 
are θ1=103.50°, θ2=114.49°, θ3=170.77°, 
θ4=110.18° and θ5=122.58° (Figure 8). 
This optimal design, as in the first case, 
corresponds to an increase in structure 
stiffness of 78%.

Finally, the composite material of the 
construction will be reinforced with a 
family of parabolic fibres. Thus, the shape 
of the reinforcing fibres is assumed in the 
form y=a1(x-p1) in the middle layer, and 
x=a2(y-p2) in the outer layers, where the 
coefficients a1, p1, a2, p2 are treated as 
design parameters. 

In this case, the calculated optimal values of 
the shape design parameters are as follows: 
a1=-3.31, p1=0.07 and a2=-0.87, p2=0.03. 
This design corresponds to the maximum 
stiffness of the structural component in the 
assumed class of fibre shape. The optimal 
structural component with the family of 
parabolic fibres is shown in Figure 9.

Figure 5. Structural component subjected to 
the load and boundary conditions.

Figure 6. History of optimisation using the genetic algorithm; a) - dependence of objective 
function vs. generation number, b) - dependence of design parameters vs. generation 
number. 
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n Conclusions
The results presented allow us to state 
that the full advantages of composite ma-
terials are obtained when the fibres are 
optimally layouted and oriented in each 
layer with respect to the assumed objec-
tive behavioural measure in the optimi-
sation process under the actual loading 
conditions of the structure. Furthermore, 
the genetic method used in the design 
process of a structure is a simple and very 
effective way of quickly finding a reason-
able solution to a given problem. Thus, it 
can serve as an alternative technique to 
the classic methods applied in the ques-
tion of designing composite materials. 

This results are a starting point for the 
optimal design of a real structure made of 
a composite material which works under 
actual loading conditions. An application 
to the more complicated design problems 
of composite structures will be presented 
in subsequent papers.
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