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The Kinemat 200 textile machine was cre-
ated at the Technical University of Sofia
by a team managed by Professor Milkov
[1]. The Kinemat 200 was designed to
produce non-woven floor coverings. The
face layer of the coverings consists of
bands, fibres or textile cables. The avera-
ge productivity of the machine is 2 m2

per minute.

A simplified drawing of the loop-forming
device of the Kinemat 200 is presented in
Figure 1. The loop forming mechanisms
(1) and (2) move the pushing ruler (3)
along a prescribed closed trajectory, so that
it penetrates cyclically into the grooves of
the loop-forming drum (4). During these
penetrations, the textile material is pushed
into a groove and one textile loop is for-

med. A constant velocity ratio transmis-
sion consisting of a teeth-chain reducer
(5), wave reducer (6) and gear train (7)
connects the loop-forming drum and the
input link of the loop-forming mechani-
sms, and provides uniform rotation by the
electrical motor (8). The flywheel (9) con-
nects the two loop forming mechanisms.

The loop-forming mechanisms are the
most complicated and the most important
devices in the Kinemat 200, because of
its various technological functions and the
significant influence on the quality of the
non-woven coverings produced.

This paper describes the synthesis me-
thods and the obtained solutions which
were used as a basis for designing the
loop-forming devices of the Kinemat 200.
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The first part of the synthesis task con-
cerns the mechanism structure. The con-
nectivity of the mechanisms follows from

the basic constructive principles, which
have been adopted during the process of
the machine building. The first of these
principles is the constructive independen-
cy of the mechanisms. This independen-
cy means that every mechanism has to be
designed as a unique module, so it can be
used and tested independently. The second
principle is continuous and uniform rota-
tion of the transport link, which is the loop-
forming drum. This link is designed with
a large radius and a large length. Thus, the
uniform rotation eliminates the inertia for-
ces of the link with the biggest mass. The
third principle concerns the possibilities
of the loop-forming mechanism to provi-
de independent adjustments of the trans-
port and working motions: the transport
motion allows the pushing ruler to follow
the rotating grooves with minimum error,
and the working motion provides the ne-
cessary penetration of the pushing ruler
into the drum grooves.

Two mechanisms structures were chosen
(Figure 2 IM, RM) according to the requ-
irements mentioned above. The so-called
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Abstract
The paper presented concerns the design of the kinematics of the loop-forming mechanisms
of a machine for non-woven coverings. Two eight-link mechanisms are optimised by means
of the mini-max Chebyshev theory. The Chebyshev Theorem is applied on the assumption
that the continuous objective functions possess the same features as the generalised Cheby-
shev polynomials if the numbers of the maximum roots of both are equal. In addition, some
basic principles that have been used during the designing process of the textile machine are
presented.

Key words: non-woven covering, loop-forming mechanism, mini-max design, kinematic
synthesis, Chebyshev's Theory.

Figure 1. Loop-forming device of Kinemat 200; 1, 2 - loop-forming mechanisms, 3 - pushing
ruler, 4 - loop-forming drum, 5 - teeth-chain reducer, 6 - wave reducer, 7 - gear train, 8 - electrical
motor, 9 - flywheel.
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ideal mechanism (IM) consists of a slider-
crank mechanism (links 1, 6 and 7), and a
crank-shaper mechanism (links 1, 2 and
3). The offset of the slider-crank mecha-
nism is variable because of the vertical
translation of link 5, which accomplishes
the transport motion by means of the tan-
gent mechanism consisting of links 3, 4
and 5. The pushing ruler is held fixed on
the slider (7). The radius of the loop-for-
ming drum (8) is selected to be as large as
the motion of the grooves in which the
ruler penetrates could be considered as a
vertical straight-line translation. Thus it is
assumed that the motion of the loop-for-
ming grooves is nearly translation. The
working motion depends mainly on the
dimensions OD=R and DE=l because of
the very weak influence of the variable
offset yE. The formulae presented as equ-
ations (1) and (2) describes the transport
and the working motion:

(1)

(2)

where:

b=xC - xB,    µ=d/r,    d=OB=xB,

R=OD,    l=DE,     and λ=R/l.

The angle ϕ notes the input link 1 orienta-
tion as shown in Figure 2.

The so-called real mechanism (RM) is
compounded with a similar structure to the
ideal one (Figure 2), but the tangent me-
chanism that consists of links 3, 4 and 5 is
changed with a cosine mechanism. The
position functions in this case are these
desrcibed by equations (3) and (4).

(3)

(4)

Here c=BC, and the rest of the notations
are the same as in formulae (1) and (2).

According to the information given abo-
ve, the synthesis task can be formulated
in two conditions. The first one concerns
the working motion, and it means that for
an interval of the input angle ∆ϕ=ϕb − ϕa
(called the working stroke interval), the
output link 7 has to penetrate into the
groove to a given depth h and to leave it at
the end of the interval ϕb. The beginning
of the working interval is noted as ϕa.
This condition can be fulfilled when the
inequality

∆�=��ϕm)−��ϕa)=��ϕm)−��ϕb)≥� (5)

is true. The input angle  ϕm corresponds
to the maximum value of the functions (1)

or (3). The transport condition can be ful-
filled if the target function

(6)

is minimised, where

(7)

is the position of the transport link and
y=yE  for IM or y=yM  for RM determined
by formulae (2) or (4) accordingly.
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The equations (1) and (2), respectively (3)
and (4) show that the selected structures
of the loop-forming mechanisms allow the
synthesis task to be solved separately, at
first for the working condition and secon-
dly for the transport condition.

As the limits of the working stroke period
are chosen according to the inequalities

             −π/2 < ϕ� ≤ −π/3 (8)

                 π/2 > ϕ� ≥ π/3 (9)

it is  easy to prove that for both mecha-
nisms the inequality (5) is roughly ful
filled if the dimension of the crank is
R>(1.1-1.3)h.

The transport conditions for both mecha-
nisms are approximately satisfied by the
use of Chebyshev's Best Approximation
Theory. After exploring the second deri-
vation of the expression (1) with respect
to ϕ:

(10)

and proving that the aim function

                       ∆yE = yd - yE            (11)

has no more than 2 roots in the working
stroke interval, it is assumed that the ob-
jective function (11) can be presented as
a first order Chebyshev polynomial [3].
The function (11) has a zero root and is
symmetrical with respect to this root. This
is the reason for considering only half of
the approximating interval. In this half in-
terval for  ϕ ∈(0,ϕ���the function (11) has
to reach its maximum limit deviations in
3 points. For the whole working stroke
interval, it follows that the number of the
maximum deviations is 6. On applying the
Chebyshev theorem, the system presen-
ted in the equations (12) is obtained:

Figure 2. Ideal (IM) and real (RM) loop-forming mechanism; 1,6,7 - slider-crank mechanism;
1,2,3 - crank-shaper mechanism; 3,4,5 - tangent mechanism (IM) or cosine mechanism
(RM); 7 - slider; 8 - loop-forming drum.
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The unknowns of the system (12) are b,
µ, the maximum deviation L and the in-
put angle positions ϕ1 and ϕ2  in which
the aim function reaches its maximum de-
viations. The third maximum deviation
point is the end of the working stroke in-
terval ϕb.  The system (12) is solved nu-
merically for p=4.23 mm and ϕb=89°, so
it is found that L=0.0027922 mm,
b=1.8013, µ=1.7094, ϕ1=0.51046578 and
ϕ2=1.2845. The minimised aim function
(11) is shown in Figure 3.

The transport condition of RM can be ap-
proximately satisfied if the aim function

                     ∆yM=yd - yM            (13)

is minimised in the working stroke inte-
rval. The second derivative of the func-
tion (13) with respect to the angle ϕ  pre-

sented in equation (14) has only complex
roots in the half-approximation interval
except for ϕ =0. There is the same sym-
metry with respect to the coordinate sys-
tem origin. These features prove that for
the half interval, which does not include a
zero point, the aim function has no more
than 1 root. As the 0-order Chebyshev
polynomial possesses the same property,
it is assumed that the function (13) is the
same order polynomial. It means that for
the half-approximation interval there are
two points in which the function reaches
its maximum deviation. According to the
Chebyshev theorem, the system presen-
ted in (15) proceeds.

The number of the unknowns (c, µ, L and
ϕ1) here is greater than the equation sys-
tem number. This means that only 3 para-
meters can be calculated by the system
(15). The optimisation method used here
involves two steps. The first concerns va-
rying the dimension c within a given inte-
rval 1.0 ≤ c ≤ 2.8 mm with constant incre-
ment. The second step is the solution of
the system (15) with respect to µ, L and
ϕ1. The minimum value of the maximum
deviation L gives the optimal values of the
remaining unknown parameters. The spa-
ce curve shown in Figure 4 describes the
dependency of maximum deviation L from
c and µ. In this way, the following opti-
mal parameters for c=1.468, L=0.0273273
mm, ϕ1=0.771, and µ=1.020543 are obta-
ined. The graph of the minimised aim
function of RM is shown in Figure 5.

The remaining constructive parameters of
both mechanisms are selected or calcula-
ted according to the necessary strength of
the links and its dynamical properties.
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� The proposed synthesis methods pro-
vide opportunities to find the best ap-
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Figure 4. Space curve of the optimal
parameters of RM.
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Equations 14 and 15
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proach of the aim functions under con-
sideration. This means that the maxi-
mum deviations obtained are the least
possible within the space of the opti-
mised parameters.

� Although the minimised aim function
of the IM has two roots more than the
similar function of the RM, and the er-
ror of the IM is 10 times larger, both
mechanisms are completely suitable for
the non-woven covering production.

� Common disadvantages of both loop-
forming mechanisms are the large num-
ber of links and the presence of slider
pairs. These disadvantages are avoided
in the next generation loop-forming
devices of the Kinemat 200 machine.
In these mechanisms, the number of the
links is decreased and only rotate pairs
are used [4-6].
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Equations 12
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