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Abstract
Given the serious problems of climate change, water shortage and water pollution, rese-
archers have paid increasing attention to the concepts of the carbon footprint and water 
footprint as useful indices to quantify and evaluate the environmental impacts of the textile 
industry. In this study, assessment of the carbon footprints and water footprints of ten kinds 
of cashmere fabrics was conducted based on the PAS 2050 specification, the Water Footprint 
Network approach and the ISO 14046 standard. The results showed that knitted cashmere 
fabrics had a greater carbon footprint than woven cashmere fabrics. Contrarily, woven ca-
shmere fabrics had a greater water footprint than knitted cashmere fabrics. The blue water 
footprint, grey water footprint and water scarcity footprint of combed sliver dyed woven 
cashmere fabric were the largest among the ten kinds of cashmere fabrics. The main pollu-
tants that caused the grey water footprints of cashmere fabrics were total phosphorus (TP), 
chlorine dioxide, hexavalent chromium (Cr (VI)) and sulfide. The leading contributors to 
the water eutrophication footprint were total nitrogen, ammonia nitrogen, chemical oxygen 
demand and TP. These typical pollutants contributed 39% ~ 48%, 23% ~ 28%, 12% ~ 24% 
and 12% ~ 14% to each cashmere product’s water eutrophication footprint, respectively. 
The leading contributors to the water ecotoxicity footprint were aniline, Cr (VI) and absor-
bable organic halogens discharged in the dyeing and finishing process.
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products is meaningful for the sustaina-
ble development of the cashmere indus-
try. Currently, the carbon footprint (CF) 
and water footprint (WF) have provided 
effective quantitative tools for evaluating 
environmental impacts caused by indus-
trial production activities. As one of the 
footprint indicators, the concept of CF is 
widely used and universally understood 
to represent the amount of greenhouse 
gases directly or indirectly emitted into 
the environment by human activity [4]. 
The WF concept is defined as the poten-
tial environmental impacts related to wa-
ter. There are two methodologies: the Wa-
ter Footprint Network (WFN) approach, 
which focuses on water quantity, and the 
international standard ISO 14046, which 
considers both water quantity and water 
quality [5, 6]. 

Researches on the CFs and WFs of tex-
tiles and apparels, including cotton [7-
15], bast fibre [16], wool [17, 18], silk 
[19-22], and viscose [20, 23-26] products 
have been reported in the past ten years. 
However, there have been few researches 
reported on the CF and WF of cashmere 
products. One example is Sun et al., who 
only calculated the blue WF, grey WF and 
indirect WF in the processing of cash-
mere knitwear. It concluded that the grey 
WF was the largest and that water pollu-
tion caused the most serious impact in the 
production process [27]. To fill this gap 
in the research of textiles’ CF and WF, 
this paper aimed to quantify and evaluate 
the CF and WF of cashmere fabrics. Data 

	 Introduction
Among all the textile materials, cashmere 
is a precious natural textile material and 
is highly popular with consumers because 
of its softness, comfort, and excellent 
heat retention [1]. According to statistics, 
China produces about 70% of the world’s 
cashmere, and the annual production of 
cashmere products exceeds 50 million 
pieces [2]. There are, however, serious 
environmental problems accompanying 
the manufacture of cashmere products. 
The environmental problems include 
greenhouse gas emission, fresh water 
resource consumption, and wastewater 
discharge, leading to degradation of the 
ecological environment [3]. At present, 
strengthening green production is an im-
portant aim of China’s textile industry. 
Assessing the environmental impacts 
caused by greenhouse gases emission, 
fresh water consumption and waste water 
discharge in the production of cashmere 

used for CF and WF calculation were ob-
tained from related Chinese standards for 
energy and water restrictions for the pro-
cessing of cashmere fabrics. Therefore, 
the results can be used as benchmarks 
for the assessment of the CF and WF of 
cashmere fabrics. It is meaningful for 
cashmere fabric production enterprises to 
improve the management of energy and 
freshwater consumption as well as waste-
water pollutant discharge.

	 Methods and data
The CF of the cashmere fabric produc-
tion process was calculated according to 
the PAS 2050 specification. The WFN 
methodology and ISO 14046 standard 
were applied to calculate and assess 
WFs. In this study, the WFs included the 
blue, grey, water scarcity and water deg-
radation footprints. Four kinds of knitted 
cashmere fabrics and six kinds of woven 
cashmere fabrics were selected for this 
research. The production processes are 
shown in Table 1. CK represents knitted 
cashmere fabric, and CW – woven cash-
mere fabric.

System boundaries
System boundaries are the basis and key 
of CF and WF accounting. They can be 
divided into a time boundary and space 
boundary. For the production process 
chains of cashmere fabrics, the time 
boundary is divided into three parts: 
raw-material acquisition, product man-
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ufacture (i.e., cashmere scouring, spin-
ning, knitting, and weaving), dyeing (i.e., 
loose cashmere dyeing, cashmere sliver 
dyeing, white yarn dyeing, piece dyeing) 
and finishing. The space boundary in-
cludes the input of fresh water and energy 
(electricity and steam), and the discharge 
of wastewater and significant pollutants 
(i.e., chemical oxygen demand (CODCr),  
total phosphorus (TP), total nitrogen 
(TN), NH3

-N, chlorine dioxide, hexava-
lent chromium (Cr (VI)), sulfide, aniline, 
absorbable organic halogens (AOX), and 
CO2 (see Figure 1). 

Calculation and assessment methods
Carbon footprint
CF refers to the consumption of energy 
from all activities in a production process 
multiplied by their corresponding emis-
sion factors [28, 29]. The CF (in kg CO2) 
is calculated as follows:

CK-3 
Raw cashmere→cashmere scouring→carding→combed sliver making→combed spinning

→white yarn dyeing→knitting→finishing→combed knitted cashmere fabric   

CK-4 
Raw cashmere→cashmere scouring→carding→combed sliver making→cashmere sliver 

dyeing→combed spinning→knitting→finishing→combed knitted cashmere fabric   

CW 

CW-1 
Raw cashmere→cashmere scouring→carding→loose cashmere dyeing→carded spinning→

weaving→finishing→carded woven cashmere fabric   

CW-2 
Raw cashmere→cashmere scouring→carding→carded spinning→weaving→piece dyeing

→finishing→carded woven cashmere fabric   

CW-3 
Raw cashmere→cashmere scouring→carding→loose cashmere dyeing→combed sliver 

making→combed spinning→weaving→finishing→combed woven cashmere fabric   

CW-4 
Raw cashmere→cashmere scouring→carding→combed sliver making→combed spinning

→white yarn dyeing→weaving→finishing→combed woven cashmere fabric   

CW-5 
Raw cashmere→cashmere scouring→carding→combed sliver making→combed spinning

→weaving→piece dyeing→finishing→combed woven cashmere fabric 

CW-6 
Raw cashmere→cashmere scouring→carding→combed sliver making→cashmere sliver 

dyeing→combed spinning→weaving→finishing→combed woven cashmere fabric 

 

2.1. System boundaries 

System boundaries are the basis and key of CF and WF accounting. They can be divided into 
a time boundary and space boundary. For the production process chains of cashmere fabrics, the 
time boundary is divided into three parts: raw-material acquisition, product manufacture (i.e., 
cashmere scouring, spinning, knitting, and weaving), dyeing (i.e., loose cashmere dyeing, 
cashmere sliver dyeing, white yarn dyeing, piece dyeing) and finishing. The space boundary 
includes the input of fresh water and energy (electricity and steam), and the discharge of 
wastewater and significant pollutants (i.e., chemical oxygen demand (CODCr), total phosphorus 
(TP), total nitrogen (TN), NH3

-N, chlorine dioxide, hexavalent chromium (Cr (Ⅵ)), sulfide, 
aniline, absorbable organic halogens (AOX), and CO2 (see Fig. 1).  
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2.2.1. Carbon footprint 

CF refers to the consumption of energy from all activities in a production process multiplied 
by their corresponding emission factors [28, 29]. The CF (in kg CO2) is calculated as follows: 

j

n

i

m

j
j fECF 

 1 1

         (1)    (1)

Where, Ej (in kg SCE) is the consump-
tion of energy j, fj (in kg CO2/kg SCE) the 
carbon emission factor of energy j, and 
i is the production processes of cashmere 
fabrics, including cashmere scouring, 
carding, combing sliver making, spin-
ning, knitting, weaving and finishing.

Blue water footprint 
The blue water footprint (WFblue) is the 
consumption of fresh water in the pro-
duction process [5]. The WFblue (in m3) is 
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Where, i is the production process (i.e., cashmere scouring, dyeing, and finishing), and Qi (in m3) 
is the water consumption of process i. 

2.2.3. Grey water footprint 

The grey water footprint (WFgrey) refers to the amount of water needed to absorb sewage 
generated by human activity [5]. The WFgrey (in m3) is calculated as follows: 
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Where, Li (in g) is the amount of pollutants in the water body of process I, Cmax (in mg/l)  the 
maximum concentration of pollutants permitted by the water-quality standard in process I, and 
Cnat (in mg/l) is the natural background concentration.  

2.2.4. Water scarcity footprint 

The water scarcity footprint (WFsc) uses fresh water consumption and the regional water 
stress index (WSI) to evaluate the impact of production on water scarcity [30]. The WFsc (in m3 
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Where, WSIj (dimensionless) is the water stress index of region j (0.01 < WSIj < 1), WSIgl 

(dimensionless)  the global average water stress index, Qi (in m3)  the water consumption of 
process I, and i is the stage of the production process. 

2.2.5. Water eutrophication footprint 

The water eutrophication footprint (WFeu) is one of the methods used to assess the impact of 
water degradation. It evaluates the eutrophication effect of nitrogen (NO3

- equivalent) and 
phosphorus (PO4

3- equivalent) in water. In this study, the PO4
3- equivalent was used to calculate 

the characteristic factors of water eutrophication pollutants in the production process of cashmere 
[31]. The WFeu (in kg PO4

3-eq) is calculated as follows: 
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Where, i is the production process (i.e., 
cashmere scouring, dyeing, and finish-
ing), and Qi (in m3) is the water con-
sumption of process i.
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is the natural background concentration. 
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Table 1. Production processes of cashmere fabrics.

Fabrics Production process 

CK

CK-1 Raw cashmere→cashmere scouring→carding→loose cashmere dyeing→carded 
spinning→knitting→finishing→carded knitted cashmere fabric 

CK-2 Raw cashmere→cashmere scouring→carding→loose cashmere dyeing→combed sliver 
making→combed spinning→knitting→finishing→combed knitted cashmere fabric 

CK-3 Raw cashmere→cashmere scouring→carding→combed sliver making→combed 
spinning→white yarn dyeing→knitting→finishing→combed knitted cashmere fabric 

CK-4 Raw cashmere→cashmere scouring→carding→combed sliver making→cashmere 
sliver dyeing→combed spinning→knitting→finishing→combed knitted cashmere fabric 

CW

CW-1 Raw cashmere→cashmere scouring→carding→loose cashmere dyeing→carded 
spinning→weaving→finishing→carded woven cashmere fabric 

CW-2 Raw cashmere→cashmere scouring→carding→carded spinning→weaving→piece 
dyeing→finishing→carded woven cashmere fabric 

CW-3 Raw cashmere→cashmere scouring→carding→loose cashmere dyeing→combed sliver 
making→combed spinning→weaving→finishing→combed woven cashmere fabric 

CW-4 Raw cashmere→cashmere scouring→carding→combed sliver making→combed 
spinning→white yarn dyeing→weaving→finishing→combed woven cashmere fabric 

CW-5 Raw cashmere→cashmere scouring→carding→combed sliver making→combed 
spinning→weaving→piece dyeing→finishing→combed woven cashmere fabric

CW-6 Raw cashmere→cashmere scouring→carding→combed sliver making→cashmere 
sliver dyeing→combed spinning→weaving→finishing→combed woven cashmere fabric

Fig. 1. System boundary of CF and WF calculation of cashmere fabrics. 

 
Fig. 2. CF of cashmere fabrics (per functional unit). 

Figure 1. System boundary of CF and WF calculation of cashmere fabrics.
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Where, WSIj (dimensionless) is the water 
stress index of region j (0.01 < WSIj < 1), 
WSIgl (dimensionless) the global average 
water stress index, Qi (in m3) the water 
consumption of process i, and i is the 
stage of the production process.

Water eutrophication footprint
The water eutrophication footprint 
(WFeu) is one of the methods used to as-
sess the impact of water degradation. It 
evaluates the eutrophication effect of ni-
trogen (NO3

- equivalent) and phosphorus 
(PO4

3- equivalent) in water. In this study, 
the PO4

3- equivalent was used to calcu-
late the characteristic factors of water 
eutrophication pollutants in the produc-
tion process of cashmere [31]. The WFeu  
(in kg PO4

3-eq) is calculated as follows:
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Where, Mj (in kg) is the mass of pollutant j, CFeu,j (in kg PO4
3- eq)  the characteristic factor of 

eutrophication pollutant j, and i is the stage of the production process (i.e., cashmere scouring, 
dyeing, and finishing).  

2.2.6. Water ecotoxicity footprint 

Another method to evaluate water degradation is the water ecotoxicity footprint (WFec), 
which is used to evaluate the impact of toxic substances in water bodies on the water environment 
[31]. The WFac (in m3 H2O eq) is calculated as follows: 
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Where, Mj (in kg) is the mass of pollution j, CFec,j (in m3 H2O eq)  the characteristic factor of 
ecotoxicity pollutant j, and i is the stage of the production process.  

2.3. Data collection 

     In this study, 1 ton of produced cashmere was chosen as the functional unit. Data of energy 
consumption and water consumption in production processes were derived from the standard 
T/CNTAC 38-2019 Technical specification for eco-design product assessment of cashmere goods 
[32]. Data of the discharged wastewater pollutant were derived from China’s national standards: 
GB 28937-2012 Discharge standards of water pollutants for woolen textile industry [33] and GB 
4287-2012 Discharge standards of water pollutants for dyeing and finishing of textile industry 
[34]. 

      The CF was calculated with the carbon emission coefficient of raw coal, which is 2.492 
[28]. In China, the main production area of cashmere fabrics is Inner Mongolia [35]. The water 
pressure index of Inner Mongolia is 0.297 and the global water pressure index  0.602 [36]. 

     The characteristic factors of wastewater pollutants used for water degradation footprint 
calculation were referred to Heijungs et al.[37], and the factors are shown in Table 2. 

Table 2. Characteristic factors for water degradation footprint calculation. 

Footprint  Substance  Characterisation factor  Unit 

Water eutrophication footprint 

CODcr 0.022 

kg PO4
3-eq/kg 

TP 3.06 

TN 0.42 

NH3
-N 0.383 

Water ecotoxicity footprint  aniline 5 m3 H2O eq/mg 
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the stage of the production process (i.e., 
cashmere scouring, dyeing, and finishing). 

Water ecotoxicity footprint
Another method to evaluate water degra-

dation is the water ecotoxicity footprint 
(WFec), which is used to evaluate the im-
pact of toxic substances in water bodies 
on the water environment [31]. The WFac 
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Where, Mj (in kg) is the mass of pollution j,  
CFec,j (in m3 H2O eq) the characteristic 
factor of ecotoxicity pollutant j, and i is 
the stage of the production process. 

Data collection
In this study, 1 ton of produced cashmere 
was chosen as the functional unit. Data of 
energy consumption and water consump-
tion in production processes were derived 
from the standard T/CNTAC 38-2019  
Technical specification for eco-design 
product assessment of cashmere goods 
[32]. Data of the discharged wastewa-
ter pollutant were derived from China’s 
national standards: GB 28937-2012 
Discharge standards of water pollutants 
for woolen textile industry [33] and GB 
4287-2012 Discharge standards of water 
pollutants for dyeing and finishing of tex-
tile industry [34].

The CF was calculated with the carbon 

emission coefficient of raw coal, which 
is 2.492 [28]. In China, the main pro-
duction area of cashmere fabrics is Inner 
Mongolia [35]. The water pressure index 
of Inner Mongolia is 0.297 and the global 
water pressure index 0.602 [36].

The characteristic factors of wastewater 
pollutants used for water degradation 
footprint calculation were referred to 
Heijungs et al. [37], and the factors are 
shown in Table 2.

	 Results and discussion
Carbon footprints of cashmere fabrics
The CFs of cashmere fabrics are shown 
in Figure 2. Electricity and steam are 
major energies in the production of cash-
mere fabrics. It can be seen that the CFs 
of knitted cashmere fabrics were gener-
ally larger than those of woven fabrics, 
with CK-4 having the largest CF (i.e., 
16,073.40 kgCO2/t). This was mainly 
because the energy consumption of the 
cashmere knitting and finishing process 
was greater than that of the weaving and 
finishing process. The CF of the combed 
cashmere knitting and finishing process 
was about 1.85 times larger than that of 
the carded weaving and finishing process. 
The CFs of the combed knitted cashmere 
fabrics (i.e., CK-2, CK-3 and CK-4) 
were larger than that of the carded knit-
ted fabric (CK-1). In contrast, the CFs of 
the carded woven cashmere fabrics (i.e., 
CW-1 and CW-2) were larger than those 
of the combed woven fabrics (CW-3, 
CW-4, CW-5, and CW-6). This was the 
result of the energy consumption of the 
carded woven cashmere fabrics’ finishing 
processes being about 1.87 times higher 
than that of the combed woven fabrics’ 

Table 2. Characteristic factors for water degradation footprint calculation.

Footprint Substance Characterisation factor Unit

Water eutrophication footprint

CODcr 0.022

kg PO4
3-eq/kg

TP 3.06
TN 0.42

NH3
-N 0.383

Water ecotoxicity footprint 
aniline 5

m3 H2O eq/mgCr (VI) 1
AOX 0.00094

Fig. 1. System boundary of CF and WF calculation of cashmere fabrics. 
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finishing processes.
Blue water footprints of cashmere 
fabrics
As shown in Figure 3, the WFblue of the 
ten kinds of cashmere fabrics were as fol-
lows: CW-6 > (CW-3 = CW-4 = CW-5)  
> (CW-1 = CW-2) > CK-4 > (CK-1 = 
CK-2 = CK-3). The WFblue of CW-6 was 
approximately 1.53 times larger than that 
of CK-1, CK-2 and CK-3. The woven 
cashmere fabrics required the largest wa-
ter consumption. In particular, the finish-
ing process of woven cashmere fabrics 
required a large amount of fresh water, 
approximately 1.50 times larger than that 
of the finishing process of knitted fab-
ric. The results also showed that for the 
same kind of cashmere fabric (knitted or 
woven), the WFblue of the combed sliv-
er dyed fabrics (i.e., CK-4 and CW-6) 
were larger due to the large amount of 
fresh water consumed in the sliver dye-
ing stage.

Grey water footprints of cashmere 
fabrics
The WFgrey of cashmere fabrics are 
shown in Figure 4. It should be noted 
that the characteristic pollutants that 
caused the WFgrey were TP for the cash-
mere scouring process and TP, Cr(VI), 
chlorine dioxide, and sulfide for the 
dyeing and finishing processes. It can be 
seen from Figure 4 that CW-6 had the 
largest WFgrey, which was approximate-
ly 1.50 times larger than that of CK-1, 
CK-2, and CK-3. Cashmere fabrics pro-
duced in enterprises located in specially 
protected areas had a larger WFgrey. This 
was caused by the strict limitation of 
wastewater pollutants in the cashmere 
scouring, dyeing and finishing processes 

in the specially protected areas.
Water scarcity footprints of cashmere 
fabrics
The WFsc of cashmere fabrics are shown 
in Figure 5. The WFsc of CW-6 was the 
largest (i.e., 202.11 m3/t), 1.53 times larg-
er than those of CK-1, CK-2, and CK-3. 
As can be seen from Figure 5, the WFsc 
of the combed woven cashmere fabrics 
(i.e., CW-3, CW-4, CW-5, and CW-6) 
were significantly larger than those of 
other products, ranging from approxi-
mately 43 m3 H2O eq/t to 70 m3 H2O eq/t. 
This was mainly caused by the following 
two reasons: (1) the production process 
of the combed cashmere fabrics involved 
the combed sliver making process, while 
that of the carded cashmere fabrics did 
not; and (2) the water consumption in the 
cashmere finishing process was generally 
higher than that in the knitting process.

Water eutrophication footprints 
of cashmere fabrics
As shown in Figure 6, cashmere scour-
ing, dyeing, and finishing had a major in-
fluence on water eutrophication. Among 
the ten kinds of cashmere fabrics pro-
duced in different kinds of enterprises, 
the WFeu of the carded woven cashmere 
fabrics (i.e., CW-1 and CW-2) were the 
largest, followed by the combed woven 
cashmere fabrics (i.e., CW-3, CW-4, 
CW-5, and CW-6). Knitted cashmere fab-
rics (i.e., CK-1, CK-2, CK-3, and CK-4)  
had a much smaller WFeu. The WFeu of 
woven cashmere fabrics was approxi-
mately 4 times to 6 times larger than that 
of the knitted fabrics. Cashmere fabrics 
produced in the existing enterprises had 
the largest WFeu values. Knitted cash-

 
Fig. 3. WFblue of cashmere fabrics (per functional unit). 
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mere fabrics (i.e., CK-1, CK-2, CK-3, 
and CK-4) that were produced in the en-
terprises located in specially protected 
areas had the smallest WFeu. The main 
contributors to the WFeu were CODCr,  
TP, TN, and NH3

-N. Among these waste-
water pollutants, TN generated the larg-
est WFeu, contributing 39% ~ 48% for 
each WFeu, followed by NH3

-N (con-
tributing 23% ~ 28%), CODCr (contrib-
uting 12% ~ 24%) and TP (contributing 
12% ~ 14%).

Water ecotoxicity footprints 
of cashmere fabrics 
From Figure 7 it can be seen that the 
WFec of the ten kinds of cashmere fab-
rics were as follows: carded woven 
cashmere fabrics (i.e., CW-1 = CW-2) 
> combed woven cashmere fabrics (i.e., 
CW-3 = CW-4 = CW-5 = CW-6) > knit-
ted cashmere fabrics (i.e., CK-1 = CK-2 
= CK-3 = CK-4). The main wastewater 
pollutants that caused water ecotoxicity 
in the dyeing and finishing processes for 
cashmere fabrics were aniline, Cr(VI) 
and AOX. The contribution of aniline to 
the WFec was approximately 355 times 
larger than that of AOX and 10 times 
larger than that of Cr(VI). Moreover, be-
cause of the strict limitation of aniline 
and Cr(VI) in new enterprises and those 
located in specially protected areas, AOX 
was the main contributor to the aquatic 
ecotoxicity for these two kinds of enter-
prises. The values of their WFec were the 
smallest compared to existing enterpris-
es, about 1.278 ~ 1.918 m3 H2O eq/t and 
7.520 ~ 12.972 m3 H2O eq/t.

	 Conclusions
The CF and WF are useful tools for the 
identification of the environmental im-
pacts of relevant carbon emission, fresh-
water consumption and wastewater pollu-
tion. In this paper, the CFs and WFs of ten 
kinds of cashmere fabrics were calculated 
from raw-material acquisition to the final 
fabrics. Although all cashmere fabric pro-
duction processes contributed to the total 
CFs and total WFs, dyeing and finishing 
processes (i.e., included knitting, dyeing 
and finishing, combed woven dyeing and 
finishing, and carding woven dyeing and 
finishing) were the key processes causing 
larger carbon emission, freshwater con-
sumption and wastewater pollution. In 
comparison, the combed woven dyeing 
and finishing process had the least CF, 
while the knitted dyeing and finishing 
process had the least WFs among all the 
dyeing and finishing processes.

This paper provided benchmarks for the 
assessment of cashmere fabrics’ CFs and 
WFs. It is meaningful for the producers 
to implement appropriate management to 
reduce carbon emission, water consump-
tion and water pollution for the realisa-
tion of the green production of cashmere 
fabrics. However, with respect to the dif-
ferent quantisation units of CF and WF, 
it is hard to conclude which kind of cash-
mere fabric is more environment friendly 
in this study. Comprehensive evaluation 
of CF and WF can be conducted in the 
future research in order to select a green-
er product.
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