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Figure 9. The shearlet coefficients of the broken warp image at level 4 

Figure 10. The schematic graph of the shearlet coefficients selection 

Figure 11. The reconstructed image of warp-knitted fabric with broken warp 
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Figure 12. Loop structure of warp-knitted fabric 

Figure 13. Final result of the broken warp at the front bar 

   
(a) Original            (b) reconstructed            (c) result 

Figure 14. Results of the broken warp at the back bar 

   

Figure 12. Loop structure of warp-knitted fabric

high frequency coefficients. In this work, 
valuable shearlet coefficients are selected 
using an energy method obtained based 
on Equation (24).

The selection rule for the values is il-
lustrated as Equation (29). Where Eal is 
the average energy value of the lth level 
and 
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of the lth level and n
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than the average energy value alE  is set as null coefficient matrix and the rest coefficient is kept intact. 
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The schematic graph of the shearlet coefficients selection is shown in Figure 10. The black regions are the 

selected coefficients and will be used to recompose the high frequency coefficient of every level. Then the 

warp-knitted fabric image with broken warp is reconstructed by using the inverse discrete Shearlet transform 

which is the inverse procedure of the decomposition. Figure 11 shows the final reconstructed image of Figure 

5, which keeps most of the effective information due to the excellent property of Shearlet transform. 

3.3 Iterative threshold segmentation and morphological operation 

After the reconstructed fabric image is obtained, the iterative threshold segmentation is needed for the next 

step. This method is conventional, but its segmentation ability is excellent if the input image is in a good 

quality. In the reconstructed image obtained above, the object is distinguished from the background and makes 

the image is suitable for the segmentation by the iterative threshold method. The theory of this method can be 

expressed as equation (30). Where T1, OT and BT  is the presupposed threshold, object threshold and 

background threshold respectively,  ,f i j  is the gray value of the input image f and  ,P i j  is the 

probability of the gray value at point  ,i j . When 1kT   is unchanged, the computation will be ended.  
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However, the segmented result should be also processed by follow-up work in order to get a smoother result. 

In addition, the miscellaneous points generated by the loop structure of warp-knitted fabric should be 

eliminated. Figure 12 shows the loop structure graph of warp-knitted of Figure 5. These wispy loop holes will 
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In addition, the miscellaneous points generated by the loop structure of warp-knitted fabric should be 
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A schematic graph of the shearlet coef-
ficient selection is shown in Figure 10. 
The black regions are the coefficients se-
lected, which will be used to recompose 
the high frequency coefficient of every 
level. Then the warp-knitted fabric im-
age with a broken warp is reconstructed 
using the inverse discrete Shearlet trans-
form, which is an inverse procedure of 
the decomposition. Figure 11 shows the 
final reconstructed image of Figure 5, 
which keeps most of the effective infor-
mation due to the excellent properties of 
the Shearlet transform.

Iterative threshold segmentation 
and morphological operation
After the reconstructed fabric image is 
obtained, iterative threshold segmen-
tation is needed for the next step. This 
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Figure 14. Results of the broken warp at the back bar: a) original, b) reconstructed, c) result.
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(a) Original           (b) reconstructed            (c) result 

Figure 15. Results of  oil 1 

   
(a) Original           (b) reconstructed            (c) result 

Figure 16. Results of  oil 2 

   
(a) Original           (b) reconstructed            (c) result 

Figure 17. Results of  hole 1 

 

 

   
(a) Original           (b) reconstructed            (c) result 

Figure 18. Results of  hole 2 

 

 

Figure 16. Results of oil 2: a) original, b) reconstructed, c) result.
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Figure 17. Results of hole 1: (a) original, (b) reconstructed, (c) result.
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(a) Original           (b) reconstructed            (c) result 

Figure 18. Results of  hole 2 

 

 

Figure 18. Results of hole 2: a) original, b) reconstructed, c) result.
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method is conventional, but its segmenta-
tion ability is excellent if the input image 
is of good quality. In the reconstructed 
image obtained above, the object is dis-
tinguished from the background, making 
the image suitable for segmentation by 
the iterative threshold method. The the-
ory of this method can be expressed as 
Equation (30). Where T1, TO and TB are 
the presupposed threshold, object thresh-
old and background threshold, respec-
tively; f(i, j) is the gray value of the input 
image f and P(i, j) is the probability of the 
gray value at point (i, j). When Tk+1 is un-
changed, the computation will be ended.
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However, the segmented result should be also processed by follow-up work in order to get a smoother result. 

In addition, the miscellaneous points generated by the loop structure of warp-knitted fabric should be 

eliminated. Figure 12 shows the loop structure graph of warp-knitted of Figure 5. These wispy loop holes will 
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However, the segmented result should be also processed by follow-up work in order to get a smoother result. 

In addition, the miscellaneous points generated by the loop structure of warp-knitted fabric should be 

eliminated. Figure 12 shows the loop structure graph of warp-knitted of Figure 5. These wispy loop holes will 

However, the segmented result should 
also be processed by follow-up work in 
order to get a smoother result. In addition, 
the miscellaneous points generated by 
the loop structure of warp-knitted fabric 
should be eliminated. Figure 12 shows 
the loop structure graph of the warp-knit-
ted fabric of Figure 5. The wispy loop 
holes will induce a dramatic gray level 
change, as does the defect . Because of 
this, the segmented result is not promis-
ing enough, and a great deal of little points 
are filled up. The morphological opera-
tions [25-26] are used to get rid of these 
points. Those whose area is smaller than 
the presupposed value will be removed. 
The miscellaneous points induced by the 
loop structure is far smaller than this val-
ue and will be removed completely. Then 
the image will be processed by the mor-
phological opening to make the defect 

 

 

 

  
Figure 12. Loop structure of warp-knitted fabric 

Figure 13. Final result of the broken warp at the front bar 

   
(a) Original            (b) reconstructed            (c) result 

Figure 14. Results of the broken warp at the back bar 

   

Figure 15. Results of oil 2: a) original, b) reconstructed, c) result.
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object smooth. It is widely acknowledged 
that the theory of morphological opening 
is image erosion and dilation, which can 
make a large object smooth while erase 
tiny ones. Thus the final result is quite ex-
cellent; Figure 13 shows the final image 
of the broken warp at the front bar.

	 Results
In order to investigate the performance of 
the method proposed above, preliminary 
experiments were performed on two-di-
mensional warp-knitted fabric images 
which had broken warp at the back bar, 
as well as oil 1, oil 2, hole 1 and hole 2, 
as shown in Figures 14-18. The original, 
reconstructed and segmented result im-
ages are shown in each of these Figures, 
respectively.

By comparing each segmented result 
with the original image, a segmented de-
fect profile is obtained quite similar to the 
defect profile in the original image. These 
results maintain an accurate profile and 
demonstrates that the Shearlet transform 
with segmented threshold de-noising can 
keep most of directional information of 
the original images. Moreover from the 
results above we can also see that the 
final resultant image keeps most of the 
effective information of the warp-knitted 
fabric image and the defect in the fabric 
can be identified automatically, which 
demonstrates that it is an effective way 
to detect the defect in warp-fabric in the 
garment industry.

	 Conslusions
In this work we have introduced a bur-
geoning multiscale and geometric analy-
sis method to detect defects on warp-knit-
ted fabric, which are found based on 
the Shearlet transform. The method has 
a simpler discrete implementation than 
the Curvelet transform based on a rigor-
ous and simple mathematical framework. 
It can provide more flexible decompo-
sition on the basis of multiscale and ge-
ometric representation. Any number of 
shearlet coefficients can be obtained us-
ing this method.

After the acquisition of several groups of 
shearlet coefficients, these will be classi-
fied as the signal noise coefficient, tran-
sition coefficient and signal coefficient 
based on the energy and processed by the 
segmented threshold de-noising method. 
Then the promising shearlet coefficients 
are selected by energy selection to recon-
struct high frequency coefficients, and the 

reconstructed image will be formed by the 
inverse Shearlet transform. The final seg-
mented result is obtained through the iter-
ative threshold segmentation and morpho-
logical operation. The results demonstrate 
that the segmented defect profile is quite 
distinct and verisimilar compared with 
the original fabric defect images. It can be 
applied in further automatic warp-knitted 
fabric defect identification.
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