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Abstract
The 3D simulation of fabrics is an interesting issue in many fields, such as computer engi-
neering, textile engineering, cloth design and so on. Several methods have been presented 
for fabric simulation. The mass spring model, a typical physically-based method, is one of 
the methods for fabric simulation which is widely considered by researchers due to rapid 
simulation and being more consistent with reality. The aim of this paper is the optimization 
of mass spring parameters in the simulation of the drape behaviour of knitted fabric using 
the Imperialist Competitive Algorithm. First a mass spring model is proposed to simulate 
the drape behavior of knitted fabric. Then in order to reduce the error value between the 
simulated and actual result (reducing the simulation error value), parameters of the mass 
spring model such as the stiffness coefficient, damping coefficient, elongation rate, topology 
and natural length of the spring are optimized using the Imperialist Competitive Algorithm 
(ICA). The ICA parameters are specified using the Taguchi Design of Experiment. Finally 
fabrics drape shapes are simulated in other situations and compared with their actual results 
to validate the model parameters. Results show that the optimized model is able to predict 
the drape behavior of knitted fabric with an error value of 2.4 percent.

Key words: mass spring model, knitted fabric, fabric drape behavior, Taguchi method, 
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 Introduction 
Drape is one of the most important of the 
apparel properties of fabrics; it is directly 
related to textile aesthetics. The draping 
behavior of fabrics has been investigated 
by many researchers. One of the earliest 
studies in this area was done by Weil, in 
which he used geometric equations to 
model fabric behavior [1]. Another kind 
of modelling are the physically-based 
mass spring models, which mainly in-
clude finite element models [2-5], parti-
cle system models [6-8] and mass spring 
models. Among these, the mass–spring 
model is a simple and powerful approach 
for fabric simulation.  Provot first pro-
posed a mass spring model to simulate 
the 3D shape of a draping fabric [9]. 
After that, the mass-spring model was 
modified and developed by several other 
researchers for simulation of woven and 
knitted fabric [10-13].

Knitted fabrics are widely used by the 
apparel industry due to their good com-
fort, flexibility, elasticity, and formabil-
ity properties. To model knitted fabrics, 
various investigations have been carried 
out, most of which were based on the 
loop structure [14-15]. However, existing 
models based on a single loop structure 
are difficult to apply in practice when 
used to simulate the draping behavior of 
fabric due to their complexity and heavy 
computation. Therefore a general and 

flexible model for simulating the draping 
of most types of knitted fabrics is needed. 
Feng Ji et al. developed a practical mass-
spring system to simulate the draping of 
woven and knitted fabrics. They found in 
dynamic draping simulation that the knit-
ted fabrics selected have more deforma-
tion with smoother appearance than the 
woven fabrics due to their lower bend-
ing [16]. Other researchers also used the 
mass spring model for simulation of knit-
ted fabric behavior, such as Chen in 2003 
[17] and Durupınar in 2007 [18]. 

One researcher investigated the problem 
of the difference between theoretical and 
experimental results. For example, in the 
mass spring model, it is required to set 
the model parameters describing defor-
mation behavior. In this regard, a few 
optimized based approaches have been 
carried out to recover the mass spring 
parameters in fabric simulation by cor-
recting the model parameters according 
to the experimental result. For instance, 
Louchet et al used the genetic algorithm 
to optimize the mass spring model pa-
rameters in fabric simulation. The model 
parameters consist of the spring stiffness, 
elongation rate, and natural length of the 
spring in stretch, bend and shear cases. 
They showed the validity of the opti-
mized model by recovering the model 
parameters in the case of hanging a sim-
ulated fabric from two corners [19]. Bi-
anchi et al proposed a solution to spec-
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dramatically evolved during the past dec-
ade. However, there still exit some lim-
itation, one of which in the fabric mod-
eling problem is the difference between 
real and simulation results (Figure 1). 
Researchers who have considered this 
problem in their work are few because 
the research has been mainly devoted to 
computer graphics and not especially to 
textile engineering. Most researchers are 
looking for new techniques to increase 
speed in fabric simulation in real time 
[24-28].

However, in the field of textile engineer-
ing, realistic simulation of fabric is more 
important than real time simulation. Re-
alism is usually used as a criterion to 
evaluate the accuracy of simulation, and 
plays an important role in achieving this. 
This may be important especially in the 
textile industry, since it leads to the sav-
ing of time and money by preventing the 
production of garments that will not be 
sold. 

Also realistic simulation is especially im-
portant in cloth design software, which 
can be useful as follows:
n Simulating cloth without costing 

countless hours.
n Saving from guessing how clothes 

should fit in real life.

Therefore the aim of this paper is to pres-
ent a new and effective technique to gen-
erate realistic simulation of knitted fabric 
drape. In order to reduce the difference 
between real and simulation results, the 
following strategy can be used :
n Proposing an accurate and appropriate 

model that can simulate the real be-
havior of fabrics.

n Optimization model parameters using 
the optimization method such as the 
meta-heuristic technique.

n Application of more accurate environ-
mental conditions mentioned for fab-
ric simulation, such as external forces.

In this work, for achieving realistic simu-
lation, a second strategy i.e. optimization 
model parameters is mentioned. Thus 
the Imperialist Competitive Algorithm 
is used as an effective and powerful al-
gorithm in optimization. Optimization is 
carried out through comparison of real 
and simulation results.

 Physical model
In this paper, the mass spring model is 
used to simulate the drape behavior of 

ification model parameters based on the 
genetic algorithm. Their focus was the 
determination of mesh topology in 2D 
simulation. They used the Finite Ele-
ments Model (FEM) to obtain the topol-
ogy of a mass spring model. Their work 
results demonstrated that the genetic 
algorithm is able to recover the topolo-
gy of the mass spring model, and spring 
connections were successfully identified 
[20]. In the subsequent work, they ex-
tended their method to the 3D model. 
Furthermore they introduced a new ap-
proach to simultaneously optimize mesh 
topology and spring stiffness values. 
Linear elastic FEM deformation com-
putations were used as reference for the 
model confirmation [21]. Han et. al con-
sidered a range of parameter values for 
the mass spring model (bending stiffness, 
stretch stiffness, and shear stiffness) for 
fabric simulation, and in order to achieve 
the highest compliance, they determined 
appropriate values for these three model 
parameters by using the trial and error 
method [22]. Mongus et al. used the ge-
netic algorithm to find the best values for 
stretch and shear spring stiffness coeffi-
cients in mass spring modeling for fab-
ric simulation. Optimization was done 
through error minimization between the 
model and experimental results. They 
used two indexes in the objective func-
tion to compare simulated and real fabric 
behavior: the drape coefficient (DC) and 
distribution of folds. Different textiles 
may produce the same DC but they differ 
in the number, amplitude and distribution 
of folds. Therefore they used the Fast 
Fourier Transformation to measure these 
properties [23]. 

The novelties of this paper is proposing 
a new and effective technique through 
optimization model parameters to gen-
erate a realistic simulation of knitted 
fabric drape. So far, no research has 
been done using the Imperialist Com-
petitive Algorithm (ICA) for optimiza-
tion of the mass spring model in fabric 
simulation. Therefore the purpose of 
this paper is determining an appropriate 
model to simulate the drape behavior of 
knitted fabric by using the Imperialist 
Competitive Algorithm (ICA). In the 
first part of this paper, it will be nec-
essary to describe a system to visually 
build a realistic simulation of fabric us-
ing a physically based mass spring mod-
el. Then a meta-heuristic method based 
on the Imperialist Competitive Algo-
rithm (ICA) is presented to identify the 
model parameters from given geomet-
ric data. For collecting these data, the 
drape behavior of nine different types of 
knitted fabrics hanging from four fixed 
corners were measured. To achieve the 
highest precision and accuracy of the 
optimization algorithm, the ICA param-
eters are tuned using the Taguchi De-
sign of Experiment. Finally in order to 
check the model verification, the drape 
deformation of simulated fabric is com-
pared with the real behavior of fabric 
in other situations (two fixed corners). 
The results presented show the ability of 
the ICA algorithm to recover the mass 
spring parameters in fabric simulation.

 Problem definition
Fabric simulation is the result of the com-
bination of various methods that have 

Figure 1. Fabric sample: a) simulation fabric, b) real fabric.

a) b)
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knitted fabric. The mass-spring model is 
a popular method of deformable model-
ling,, discretisising the objects simulated 
into a set of masses that are interconnect-
ed by springs and dampers.

Mesh
In the mass spring model, fabric is rep-
resented as a grid of mass points called 
a mesh, in which connections between 
the mass points are through elastic 
linkage (spring). Each mass point has 
a position, velocity and acceleration 
and responds to both internal and exter-
nal forces. By considering the linkage 
between mass and springs, different 
types of mesh have been presented by 
researchers [9].

Forces analysis
In the mass spring model, the position of 
each particle depends on both the internal 
and external forces applied. And the po-
sition of all particles reflects the appear-
ance of the fabric. The position of each 
particle is determined by Newton’s sec-
ond law, in accordance with Equation 1.

F = ma       (1)

Where m is the mass of the particle, a the 
acceleration of the particle and F is the 
sum of both internal and external forces 
applied on the particle.

Internal forces determine the mechan-
ical properties of the fabric and mainly 
include stretch, shear and bend forces. 
The internal forces at each mass point are 
the whole results from the forces of all 
springs linking this point to its neighbors. 
According to Figure 2, the internal force 
in Pi can be represented as Equation 2. 

 F (Pi ) = –K (L – L0 )    (2)

Where L is the spring length, L0 the nat-
ural length of the spring, F the force ap-
plied at Pi and K is the spring stiffness 
coefficient connecting Pi and Pj  [9].

Super elasticity effect
In the method of fabric simulation based 
on the spring-mass model, if the behav-
ior of force-elongation is assumed to be 
linear, when a small element of the fabric 
is exposed to a large concentrated force, 
large spring deformation will cause un-
natural stretching and compression of 
fabric simulation. This phenomenon is 
called the super elasticity effect. Howev-
er, this assumption is not true and large 
deformation does not appear in the real 

Figure 2. Spring 
force between two 
mass points.

fabric [29].  Some methods have been 
presented by researchers to settle the su-
per elasticity problem. 

Methods of numerical integration
To solve the differential equations of 
physical simulation based on the mass 
spring, integration is needed, which is 
a process of simulation for calculating 
mass point positions and velocities in the 
fabric model by considering the force ap-
plied at the points. 

 Strategy of determining  
model error 

In order to correct model parameters, de-
termining the model error is important. 
The model error is referred as the differ-
ence between positions of particles as 
predicted by the model and actual posi-
tions of particles. Since most changes in 
the position of particles occur at the edges 
of the fabric, in this paper the position of 
particles at the fabric edge in the real and 
simulated fabric are compared to each 
other. For this purpose, a number of point 
positions against the reference position at 
the fabric edges are fitted to the polyno-
mial equation in the real and simulation 
image, as shown in Figure 3. The polyno-

mial equation can more accurately show 
fabric behavior when the degree of the 
polynomial is higher. Then the difference 
between the fitted polynomial equation 
coefficients for real and simulated fabrics 
get minimised by the optimisation model 
parameters. 

 Strategy of optimisation  
model parameters 

In the mass spring model, parameter 
identification (spring stiffness coeffi-
cient, damper coefficient, mesh topol-
ogy, and spring length) still remains 
a challenge. Since there is no explicit 
relationship between the physical char-
acteristics of the fabric and the param-
eters of the model, they are notoriously 
difficult to be tuned. Thus the aim of 
this paper is to find the best value for the 
model parameters through minimisation 
of the error value between the actual and 
predicted results. Model parameters that 
were selected to be optimized are as fol-
low:

Mesh topology
To identify the best topology parameter, 
three types of mesh topologies are con-
sidered as follows: 

Figure 3. Curve of the fitted polynomial equation in: a) simulated fabric, b) real fabric.

a) b)
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In the mass spring model, the position of each particle depends on both the internal  and 
external forces applied . And the position of all particles reflects the appearance of the fabric. 
The position of each particle is determined by Newton’s second law, in accordance with 
Equation 1. 
F ma (1)

Where m is the mass of the particle, a  the acceleration of the particle and F  is the sum of 
both internal and external forces applied on the particle. 
Internal forces determine the mechanical properties of the fabric and mainly include stretch, 
shear and bend forces. The internal forces at each mass point are the whole results from the 
forces of all springs linking this point to its neighbors. According to Figure 2, the internal force 
in iP can be represented as Equation 2.  
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Where  L is the spring length, 0L the natural length of the spring, F  the force applied at iP
and K is the spring stiffness coefficient connecting iP and jP [9]. 

 

Figure 2. Spring force between two mass points 

3.3 Super elasticity effect 
In the method of fabric simulation based on the spring-mass model, if the behavior of force-
elongation is assumed to be linear, when a small element of the fabric is exposed to a large 
concentrated force, large spring deformation will cause unnatural stretching and compression 
of fabric simulation. This phenomenon is called the super elasticity effect. However, this 
assumption is not true and large deformation does not appear in the real fabric [29].  Some 
methods have been presented by researchers to settle the super elasticity problem.  

3.4 Methods of numerical integration 
To solve the differential equations of physical simulation based on the mass spring, 
integration is needed, which is a process of simulation for calculating mass point positions 
and velocities in the fabric model by considering the force applied at the points.  

4- Strategy of determining model error  
In order to correct model parameters, determining the model error is important. The model 
error is referred as the difference between positions of particles as predicted by the model and 
actual positions of particles. Since most changes in the position of particles occur at the edges 
of the fabric,  in this paper the position of particles at the fabric edge in the real and simulated
fabric are compared to each other. For this purpose, a number of point positions against the 
reference position at the fabric edges are fitted to the polynomial equation in the real and 
simulation image, as  shown in Figure 3. The polynomial equation can more accurately show  
fabric behavior when the degree of the polynomial is higher.  Then the difference between the 

L

L0

Pi

F -F

Pj



FIBRES & TEXTILES in Eastern Europe  2017, Vol. 25,  1(121)68

Where m is the particle mass, g the accel-
eration of gravity, and Fgravity is the grav-
ity force.

The damping force is necessary to main-
tain the stability of the system. The role 
of this damping is, in fact, to model the 
dissipation of the mechanical energy of 
the model. The damping force can be 
represented as Equation 4.

Fdamping = – Cdamping V     (4)

Where Fdamping is the damping force,  
Cdamping the damping coefficient, and V is 
the particle velocity.

 Imperialistic Competitive 
Algorithm

The Imperialistic Competitive Algorithm 
(ICA) is an innovative evolutionary op-
timization method which is inspired 
by imperialistic competition [34]. ICA 
starts with some random initial popula-
tion, each called a “Country”. Some of 
the best countries in the population are 
selected as “Imperialists”, while the rest 
are considered as “Colonies”. Imperi-
alists can dominate colonies depending 
on their power. The power of each em-
pire depends on two parts: imperialist 
as a main core and the colonies. In the 
mathematical model, it is modelled by 
the imperialist power in addition to a few 
percent of the colonies’ power. With the 
formation of initial empires, imperialist 
competition is started. Each of the impe-
rialists will be removed if it cannot devel-
op its power (at least prevent a decrease 
in its power). Hence the survival of each 
empire is dependent on absorbing other 
empires’ colonies. Accordingly in imperi-
alist competition, stronger empires grad-
ually develop their power and weaker 
empires will be eliminated. The empires 
must develop their colonies to improve 
their power. Over time, colonies’ power 
will be closer to the imperialist’s power 
and a convergence will be seen. When 
only one empire exists, the algorithm is 
terminated. In this condition, the power 
of the empire’s colonies is very close to 

tion, the model was simplified. It was as-
sumed that all the springs (stretch, shear 
and bending) share a common stiffness 
value. According to some researches, this 
assumption can be acceptable in simula-
tion results [19, 30-32].

Damper coefficient
The role of damping is, in fact, to model 
the approximation of the dissipation of 
the mechanical energy of the model. 

Elongation rate
The elongation rate is related to the max-
imum deformation rate of the model.

Natural length of spring
This parameter determined the number of 
mass points in the model. 

Other model parameters were constant, 
as follows:

Super elasticity effect
In this paper, the position correction 
method is used to overcome the Super 
elasticity problem. In this method, defor-
mation rates of all springs are computed 
at each time step. If the deformation rate 
of a spring is greater than the critical 
threshold, then the two ends of the spring 
move toward each other along their axis, 
and hence its deformation rate exactly 
equals the critical threshold.

Methods of numerical integration
Euler Explicit method: In this method, 
the end position of the time step will be 
predicted using the slope (first deriva-
tive) at the beginning of the time step, 
shown in Figure 7 [33].

Environment condition
The environment condition or external 
forces are varied according to the envi-
ronment condition which is mentioned 
for fabric simulation. In this paper, grav-
ity and damping forces are considered as 
external forces. The gravity force applied 
at each point is defined as Equation 3. 

Fgravity = mg      (3)

Figure 4. Mesh topology: mesh with stretch, 
shear and bending springs. 
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Figure 6. Mesh topology: mesh with stretch 
and bending springs. 

Figure 5. Mesh topology: mesh with stretch 
and shear springs.

Structural Spring
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Mesh with stretch, shear and bending 
springs
In this mesh, the fabric model is con-
structed by a rectangular grid of mass 
points (also called particles). Each par-
ticle has a mass and is connected to its 
neighbors in vertical, horizontal, and di-
agonal directions (see Figure 4). There 
are three different types of springs in the 
mesh defined as follows:
1) Structural springs, 
2) Shear springs, 
3) Bending springs. 

Mesh with stretch and shear springs
In this mesh, each particle has a mass and 
is connected to its neighbors in vertical, 
horizontal, and diagonal directions (see 
Figure 5). There are two different types 
of springs in the mesh defined as follows:
1) Structural springs, 
2) Shear springs

Mesh with stretch and bending springs
In this mesh, each particle has a mass and 
is connected to its neighbors in vertical 
and horizontal directions. (See Figure 6). 
There are two different types of springs 
in the mesh defined as follows: 
1) Structural springs, 
2) Bending springs.

Spring stiffness
By adjusting the stiffness of the springs 
between the particles, the characteristics 
of the simulation model (e.g. stretching, 
bending, and shearing) can be controlled. 
In order to reduce algorithm computa-

Figure 7. Explicit Euler method. 
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the empire’s power. Details of the ICA 
approach are illustrated in the flowchart 
in Figure 8 [35].

ICA parameter tuning
One of the important components of the 
Imperialist Competitive Algorithm is the 
calibration of parameters which impress 
upon the performance of the  algorithm. 
To definie ICA parameter values and 
investigate how the mean and different 
parameters affect the model performance 
proposed, The Taguchi Design of Exper-
iment is utilised.

Taguchi method 
The Taguchi method is a well-known 
technique that provides a systematic and 
efficient methodology for process opti-
mization and is a powerful tool for the 
design of high quality systems [36]. It is 
commonly used in improving industrial 
product quality due to the proven success. 
With the Taguchi method, it is possible to 
significantly reduce the number of exper-
iments. The Taguchi method is not only 
an experimental design technique, but 
also a beneficial technique for high-qual-
ity system design. This technique helps to 
study the effect of many factors (variables) 
on the desired quality characteristic most 
economically. By studying the effect of 
individual factors on the results, the best 
factor combination can be determined.

The general steps in the Taguchi Method 
are illustrated in the flowchart in Figure 9.

1. Define the process objective, or more 
specifically, a target value for a per-
formance measurement of the process. 
The target of a process may be a min-
imum or maximum; for example, the 
goal may be to maximize the output or 
minimization. 

2. Determine the design parameters af-
fecting the process. Parameters are 
variables within the process that affect 
the performance measurement and 
can be easily controlled. 

3. Create orthogonal arrays for the pa-
rameter design indicating the number 
and conditions for each experiment. 
The selection of orthogonal arrays is 
based on the number of parameters and 
levels of variation for each parameter. 

4. Conduct the experiments indicated 
in the completed array to collect data 
that effect the performance measure-
ment. 

5. Complete data analysis to determine 
the effect of the different parameters 
on the performance measurement.

Table 1. Parameters of ICA and their levels.

Control parameters
Level

1 2 3
A Number of generation (MaxIt) 10 20 40
B Number of imperials (Nimp) 15 20 25
C Number of countries (Ncountry) 2 5 10
D Assimilation coefficient (β) 0.5 1 2
E Assimilation angle coefficient (γ) 0.1 0.3 0.5
F Revolution rate 0.2 0.3 0.4
G Colonies share coefficient (ξ) 0.1 0.15 0.2

Figure 9. Taguchi flowchart.
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Figure 8. ICA flowchart [35].
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Taguchi categorizes the objective func-
tions (Equation 2) into three groups: (I) 
smaller-the-better type, larger-the-better 
type, and nominal-is-the-best type. In this 
work, the smaller the-better type is select-
ed according to the objective function.

The important stage in the design of the 
experiment is the selection of the control 
factors. Table 1 (see page 69) represents 
ICA parameters used for initializing the 
optimisation process. These parameters 
have been allowed to vary at three dif-
ferent levels.

By referring to the Taguchi standard ar-
rays table, orthogonal arrays L27, as the 
most suitable design, is used to tune the 
ICA parameters. To generate the Taguchi 
result, Minitab software is used and each 
example is run for every level of each fac-
tor. Figure 10 shows the S/N ratio plot for 
each level of the factors of ICA. After the 
experimental design for the problem men-
tioned, the results obtained by the Taguchi 
method indicated that A (3), B (3), C (1), 
D (2), E (1), F (2) and G (2) is the best 
combination of parameters for ICA.

 Experimental
The model proposed is used to simulate 
the drape behaviour of 9 different sam-
ples of knitted fabric hanging from four 
fixed corners. Fabric specimens (100% 
Polyester) were produced on a circular 
knitting machine. The specifications of 
9 samples are illustrated in Table 2. Be-
fore taking any measurements, all fabrics 
were placed on a flat surface for 24 hours 
in standard atmospheric conditions of 23 
± 2°C and 65 ± 2% RH.

There are five stages in the drape test as 
follows:
n Fabric samples are cut to 50*50 cm2.
n Fabric samples are hung under their 

weight from two and four fixed cor-
ners in standard atmospheric condi-
tions.

n A drape deformation image of the 
fabric samples is taken with a Nikon 
COOLPIX P80 10 M pixel camera.

n Stages 2 and 3 are repeated five times 
for each sample, and the average data 
are considered to reduce measurement 
error.

n The drape deformation of the fabric 
samples are extracted from fabric im-
ages. To this point, a number of point 
positions against the reference posi-
tion at the fabric edges are fitted to the 
fourth-order polynomial equation. 

Figures 11 and 12 show the drape test 
on sample (1) for two and four fixed cor-
ners, respectively. In this figure, the fitted 
polynomial equation (marked red) and 
the reference position (marked blue) are 
specified.

 Optimization of model 
parameters using ICA

In this section, the optimization proce-
dure of the model parameters based on 
the ICA approach is presented. The mod-
el contains 5 parameters:
n Spring stiffness
n Damper coefficient
n Elongation rate
n Natural length of spring
n Mesh topology

The model parameters and their limits 
are determined by considering the initial 
tests (based on trial and error), shown in 
Table 3. To identify the topology param-
eter, three types of mesh topologies are 
considered, illustrated in Figures 4-6. 
 

Table 2. Specifications of samples.

No. Material Weight, 
g/m2 Weave Yarn count, 

Denier
Wale density, 

Cm-1
Course density, 

Cm-1
Loop density, 

Cm-1

1 Polyester 41.65 Plain 100 14 12 168
2 Polyester 44.14 Plain 150 14 14 196
3 Polyester 46.76 Plain 150 20 20 400
4 Polyester 44.63 Plain 150 14 12 168
5 Polyester 49.62 Plain 100 22 14 308
6 Polyester 27.6 Plain 100 12 12 144
7 Polyester 51.16 Plain 150 22 34 748
8 Polyester 54.41 Plain 150 22 32 704
9 Polyester 58.26 Plain 150 22 32 704

Figure 10. Mean S/N ratio plot for each level of ICA factors.

Figure 11. Drape test for two fixed 
corners: A) fabric sample, B) curve of fitted 
polynomial equation, C) reference position.

Figure 12. Drape test for four fixed corners: 
a) fabric sample edge, b) curve of fitted 
polynomial equation, c) reference position.
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Table 6. Optimal and error percentage values for 9 samples hanging from two fixed corners.

No.
Spring 

stiffness, 
N/m

Natural length 
of spring,  

cm

Elongation 
rate, 

%

Damper 
coefficient, 

N.s/m
Mesh 

topology
Error  

(objective function),
%

1 852 49 5 12 Type a 2.5
2 942 47 7 10 Type a 2.3
3 988 53 6 10 Type a 2.7
4 945 40 5 10 Type a 2.7
5 1034 49 7 11 Type a 2.2
6 674 40 5 10 Type a 2.5
7 1092 40 5 10 Type a 2.5
8 1100 55 6 10 Type a 2
9 1100 50 5 13 Type a 2,6

Table 4. Optimal and error percentage values for 9 samples hanging from four fixed corners.

No.
Spring 

stiffness, 
N/m

Natural length 
of spring,  

cm

Elongation 
rate,  

%

Damper 
coefficient, 

N.s/m
Mesh 

topology
Error  

(objective function),  
%

1 852 49 5 12 Type a 1.1
2 942 47 7 10 Type a 0.7
3 988 53 6 10 Type a 0.4
4 945 40 5 10 Type a 2.5
5 1034 49 7 11 Type a 2.5
6 674 40 5 10 Type a 0.3
7 1092 40 5 10 Type a 2.2
8 1100 55 6 10 Type a 2.6
9 1100 50 5 13 Type a 2.4

Determining the ICA objective 
function
The objective function evaluates the ac-
curacy of the model parameters. In this re-
gard, first the drape shapes of fabric sam-
ples are completely simulated according 
to the model parameters. Then a number 
of point positions against the reference 
position at the fabric edge are fitted to the 
fourth-order polynomial equation to ex-
tract the fabric drape deformation in both 
the real and simulated fabric images. In 
the ICA, it is necessary that the difference 
between fitted polynomial equation coef-
ficients for real and simulated fabrics get 
minimised. If this difference in the value 
is less, the simulated image will be closer 
to the real image. Hence the general cost 
function can be defined by Equation 5. In 
Equation 5, the value of the equation is 
equal to the simulation error.

10 
 

5 2( )
1 100

5

P Pei si
iobjectiv function


  (5)

Where eiP  are the polynomial equation coefficients of the real fabric images, and siP  are the 
polynomial equation coefficients of the fabric images simulated by the model. 
If the cost function involves positions related to all time steps, it will have a high 
computational cost. Thus the cost function only involves the time step related to the fabric 
equilibrium position in the simulation. 

9- Results and Discussion  

The tuned ICA by the Taguchi method is used to optimise the model parameters. Heuristic 
optimization algorithms should be sufficiently repeatable to achieve the same solution (or 
near the solution) in repeated runs.  Therefore after 10 runs of the algorithm for each sample,
the best results are selected. 
The optimization is performed by Matlab2014 software and a computer with the following 
specifications: Cori7, 740Qm, 1.74 GHZ, Ram 8 GB. Optimized parameters for all the 
samples are determined, which are discussed in next section in full. 
Figure 13 shows the objective function variations in every decade during the optimization 
process for sample 1. It clearly indicates the convergence of the optimization process. By 
increasing the number of decades, the mean value of the objective function shows decreasing 
behaviour which gradually reaches the best value. The ICA finds the best value very rapidly 
in early decades.  

Figure 13. Best and  mean values of the objective function for the ICA approach for sample1 

After 10 runs, the best values of the model parameters are selected for 9 samples hanging 
from four fixed corners. The results of optimized parameters and the objective function 
values are presented in Table 4. 

Table 4. Optimal and error percentage values for 9 samples hanging from four fixed corners
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1 852 49 5 12 Type a 1.1

2 942 47 7 10 Type a 0.7

3 988 53 6 10 Type a 0.4

4 945 40 5 10 Type a 2.5

5 1034 49 7 11 Type a 2.5

6 674 40 5 10 Type a 0.3

7 1092 40 5 10 Type a 2.2

8 1100 55 6 10 Type a 2.6

9 1100 50 5 13 Type a 2.4

As shown in Table 4, the model presented is able to predict the drape behavior of knitted 
fabric hanging from four fixed corners, and the mean error value of 9 different types of 
knitted fabrics is 1.6 percent. 
As shown in Table 4, sample 9 presents the highest spring stiffness, because it is the heaviest 
fabric among all the samples. However, sample 6 is the lightest fabric and  has the smallest 

(5)
Where Pei are the polynomial equation 
coefficients of the real fabric images, and  Psi are the polynomial equation coeffi-
cients of the fabric images simulated by 
the model.

If the cost function involves positions re-
lated to all time steps, it will have a high 
computational cost. Thus the cost func-
tion only involves the time step related 
to the fabric equilibrium position in the 
simulation.

 Results and discussion
The tuned ICA by the Taguchi method is 
used to optimise the model parameters. 
Heuristic optimization algorithms should 
be sufficiently repeatable to achieve the 
same solution (or near the solution) in 
repeated runs. Therefore after 10 runs of 
the algorithm for each sample, the best 
results are selected.

The optimization is performed by Mat-
lab2014 software and a computer with the 
following specifications: Cori7, 740Qm, 
1.74 GHZ, Ram 8 GB. Optimized param-
eters for all the samples are determined, 
which are discussed in next section in full.

Figure 13 shows the objective function 
variations in every decade during the op-
timization process for sample 1. It clearly 
indicates the convergence of the optimi-
zation process. By increasing the number 
of decades, the mean value of the objec-

Table 3. The model parameters and their limits.

Parameters Lower limit Upper limit
Spring stiffness, N/m 500 1200
Damper stiffness, N.s/m 10 20
Elongation rate, % 5 20
Natural length of spring, cm 4 6

tive function shows decreasing behaviour 
which gradually reaches the best value. 
The ICA finds the best value very rapidly 
in early decades. 

After 10 runs, the best values of the model 
parameters are selected for 9 samples hang-
ing from four fixed corners. The results of 
optimized parameters and the objective 
function values are presented in Table 4.

As shown in Table 4, the model present-
ed is able to predict the drape behavior of 
knitted fabric hanging from four fixed cor-
ners, and the mean error value of 9 differ-
ent types of knitted fabrics is 1.6 percent.

As shown in Table 4, sample 9 presents 
the highest spring stiffness, because it is 
the heaviest fabric among all the sam-
ples. However, sample 6 is the lightest 
fabric and has the smallest spring stiff-
ness among the nine fabrics. Similar 
results are also observed for the density 
parameter; the spring stiffness increases 
as the loop density rises. 

Table 5 (see page 72) presents figures 
of the fabric simulation generated using 
the optimized model for the 9 kinds of 
fabric samples hanging from four fixed 
corners. A comparison between the fitted 
polynomial equations for fabric edges in 
the simulated and real fabric images is 
presented in Table 5.

Figure 13. Best and mean values of the 
objective function for the ICA approach for 
sample1.
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parameter; the spring stiffness increases as the loop density rises.  
Table 5 presents figures of the fabric simulation generated using the optimized model for the 
9 kinds of fabric samples hanging from four fixed corners. A comparison between the fitted 
polynomial equations for fabric edges in the simulated and real fabric images is presented in 
Table 5. 
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Table 5 presents figures of the fabric simulation generated using the optimized model for the 
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Table 5. 

Table 5. Simulated image of 9 fabric samples hanging from four fixed corners 

No

1

Si
m

ul
at

ed
 

fa
br

ic
s

 

 

Fi
tte

d 
po

ly
no

m
ia

l

 

2

Si
m

ul
at

ed
 

fa
br

ic
s

 

 

Fi
tte

d 
po

ly
no

m
ia

l

 

3 

Si
m

ul
at

ed
 

fa
br

ic
s

 

 

Fi
tte

d 
po

ly
no

m
ia

l

4

Si
m

ul
at

ed
 

fa
br

ic
s

 

 

Fi
tte

d 
po

ly
no

m
ia

l

11 
 

spring stiffness among the nine fabrics. Similar results are also observed for the density 
parameter; the spring stiffness increases as the loop density rises.  
Table 5 presents figures of the fabric simulation generated using the optimized model for the 
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parameter; the spring stiffness increases as the loop density rises.  
Table 5 presents figures of the fabric simulation generated using the optimized model for the 
9 kinds of fabric samples hanging from four fixed corners. A comparison between the fitted 
polynomial equations for fabric edges in the simulated and real fabric images is presented in 
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Table 5. Simulated image of 9 fabric samples hanging from four fixed corners.
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To prove the accuracy and precision of the optimized model, the model’s ability to predict  
drape behavior should be evaluated with other positions of  fabric. Thus in this stage, the 
drape deformations of fabric samples in other situations (two fixed corners) are simulated  
using the optimized parameters that are shown in Table 4. Then the simulated fabric behavior 
is compared with the real fabric. Table 6 shows the optimized parameters and error 
percentage values for each sample.  

Table 6. Optimal and error percentage values for 9 samples hanging from two fixed corners. 
N
o.

Sprin
g
stiffn
ess 
(N/m
)

Natu
ral 
lengt
h of 
sprin
g
(cm)

Elonga
tion 
rate 
(%)

Damp
er 
coeffi
cient 
(N.s/
m)

Mesh 
topolo
gy

Error
(objec
tive 
functi
on)
(%)

1 852 49 5 12 Type a 2.5
2 942 47 7 10 Type a 2.3
3 988 53 6 10 Type a 2.7
4 945 40 5 10 Type a 2.7
5 1034 49 7 11 Type a 2.2
6 674 40 5 10 Type a 2.5
7 1092 40 5 10 Type a 2.5
8 1100 55 6 10 Type a 2
9 1100 50 5 13 Type a 2,6

Table 7 presents figures of the fabric simulation generated using the optimized model for 9
kinds of fabric samples hanging from four fixed corners. In this simulation, 4 polynomial 
equations are obtained according to four fabric edges. A comparison between the fitted 
polynomial equations for fabric edges in the simulated and real fabric images is presented in 
Table 7. 
In Table 7, it is observed that the mean error value in predicting  the knitted fabric drape 
behavior from two fixed corners is 2.4 Percent. Therefore the mass spring parameters for 
fabric simulation in the various positions  can be determined by using the optimization 
methods, such as the ICA.  

Table 7. Simulated images of 9 fabric samples hanging from four fixed corners. 
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To prove the accuracy and precision of the 
optimized model, the model’s ability to 
predict drape behavior should be evaluat-
ed with other positions of fabric. Thus in 
this stage, the drape deformations of fab-
ric samples in other situations (two fixed 
corners) are simulated using the optimized 
parameters that are shown in Table 4. Then 
the simulated fabric behavior is compared 
with the real fabric. Table 6 (see page 71) 
shows the optimized parameters and error 
percentage values for each sample. 

Table 7 presents figures of the fabric sim-
ulation generated using the optimized 
model for 9 kinds of fabric samples 

hanging from four fixed corners. In this 
simulation, 4 polynomial equations are 
obtained according to four fabric edges. 
A comparison between the fitted poly-
nomial equations for fabric edges in the 
simulated and real fabric images is pre-
sented in Table 7.

In Table 7, it is observed that the mean 
error value in predicting the knitted fab-
ric drape behavior from two fixed corners 
is 2.4 percent. Therefore the mass spring 
parameters for fabric simulation in the 
various positions can be determined by 
using the optimization methods, such as 
the ICA. 

 Conclusion

In this paper, the drape behavior of knit-
ted fabric is simulated by the mass spring 
model. In order to increase the model 
accuracy, its parameters, including the 
stiffness coefficient, damping coeffi-
cient, elongation rate, topology mesh 
and natural spring length, are optimized 
using the Imperialist Competitive Algo-
rithm (ICA). Then the ICA parameters 
are specified using the Taguchi Design 
of Experiment to achieve the highest 
efficiency. After determining the opti-
mized parameters, the drape behavior of 
knitted fabric samples hanging from four 
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To prove the accuracy and precision of the optimized model, the model’s ability to predict  
drape behavior should be evaluated with other positions of  fabric. Thus in this stage, the 
drape deformations of fabric samples in other situations (two fixed corners) are simulated  
using the optimized parameters that are shown in Table 4. Then the simulated fabric behavior 
is compared with the real fabric. Table 6 shows the optimized parameters and error 
percentage values for each sample.  

Table 6. Optimal and error percentage values for 9 samples hanging from two fixed corners. 
N
o.

Sprin
g
stiffn
ess 
(N/m
)

Natu
ral 
lengt
h of 
sprin
g
(cm)

Elonga
tion 
rate 
(%)

Damp
er 
coeffi
cient 
(N.s/
m)

Mesh 
topolo
gy

Error
(objec
tive 
functi
on)
(%)

1 852 49 5 12 Type a 2.5
2 942 47 7 10 Type a 2.3
3 988 53 6 10 Type a 2.7
4 945 40 5 10 Type a 2.7
5 1034 49 7 11 Type a 2.2
6 674 40 5 10 Type a 2.5
7 1092 40 5 10 Type a 2.5
8 1100 55 6 10 Type a 2
9 1100 50 5 13 Type a 2,6

Table 7 presents figures of the fabric simulation generated using the optimized model for 9
kinds of fabric samples hanging from four fixed corners. In this simulation, 4 polynomial 
equations are obtained according to four fabric edges. A comparison between the fitted 
polynomial equations for fabric edges in the simulated and real fabric images is presented in 
Table 7. 
In Table 7, it is observed that the mean error value in predicting  the knitted fabric drape 
behavior from two fixed corners is 2.4 Percent. Therefore the mass spring parameters for 
fabric simulation in the various positions  can be determined by using the optimization 
methods, such as the ICA.  

Table 7. Simulated images of 9 fabric samples hanging from four fixed corners. 
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10- Conclusion 
In this paper, the drape behavior of knitted fabric is simulated by the mass spring model.  In
order to increase the model accuracy, its parameters, including the stiffness coefficient, 
damping coefficient, elongation rate, topology mesh and natural spring length, are optimized 
using the Imperialist Competitive Algorithm (ICA). Then the ICA parameters are specified  
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10- Conclusion 
In this paper, the drape behavior of knitted fabric is simulated by the mass spring model.  In
order to increase the model accuracy, its parameters, including the stiffness coefficient, 
damping coefficient, elongation rate, topology mesh and natural spring length, are optimized 
using the Imperialist Competitive Algorithm (ICA). Then the ICA parameters are specified  
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Table 7. Simulated images of 9 fabric samples hanging from four fixed corners.
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10- Conclusion 
In this paper, the drape behavior of knitted fabric is simulated by the mass spring model.  In
order to increase the model accuracy, its parameters, including the stiffness coefficient, 
damping coefficient, elongation rate, topology mesh and natural spring length, are optimized 
using the Imperialist Competitive Algorithm (ICA). Then the ICA parameters are specified  
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10- Conclusion 
In this paper, the drape behavior of knitted fabric is simulated by the mass spring model.  In
order to increase the model accuracy, its parameters, including the stiffness coefficient, 
damping coefficient, elongation rate, topology mesh and natural spring length, are optimized 
using the Imperialist Competitive Algorithm (ICA). Then the ICA parameters are specified  
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10- Conclusion 
In this paper, the drape behavior of knitted fabric is simulated by the mass spring model.  In
order to increase the model accuracy, its parameters, including the stiffness coefficient, 
damping coefficient, elongation rate, topology mesh and natural spring length, are optimized 
using the Imperialist Competitive Algorithm (ICA). Then the ICA parameters are specified  
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10- Conclusion 
In this paper, the drape behavior of knitted fabric is simulated by the mass spring model.  In
order to increase the model accuracy, its parameters, including the stiffness coefficient, 
damping coefficient, elongation rate, topology mesh and natural spring length, are optimized 
using the Imperialist Competitive Algorithm (ICA). Then the ICA parameters are specified  
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10- Conclusion 
In this paper, the drape behavior of knitted fabric is simulated by the mass spring model.  In
order to increase the model accuracy, its parameters, including the stiffness coefficient, 
damping coefficient, elongation rate, topology mesh and natural spring length, are optimized 
using the Imperialist Competitive Algorithm (ICA). Then the ICA parameters are specified  
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10- Conclusion 
In this paper, the drape behavior of knitted fabric is simulated by the mass spring model.  In
order to increase the model accuracy, its parameters, including the stiffness coefficient, 
damping coefficient, elongation rate, topology mesh and natural spring length, are optimized 
using the Imperialist Competitive Algorithm (ICA). Then the ICA parameters are specified  
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fixed corners are simulated using the op-
timized model and then compared with 
the real fabric behavior. It was found that 
the mean error value of 9 kinds of fab-
rics is 1.6 percent. To prove the accuracy 
and precision of the optimized model, the 
model’s ability to predict fabric behavior 
in a new position should be investigat-
ed. Therefore the drape deformations of 
fabric samples in other situations (two 
fixed corners) are simulated using the 
optimized parameters. It is observed that 
the optimized model is able to predict the 
drape behavior of knitted fabric with an 
error value of 2.4 percent.
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We look forward to seeing you in 
Corfu next May! 

Dr Georgios Priniotakis 
Associate Professor

Chairman of the organizing 
committee

&
Univ.-Prof. Dr.-Ing. habil.  

Dipl.-Wirt. Ing. Chokri Cherif
Director of Institute of Textile 

Machinery and High Performance 
Material Technology  

at TU Dresden  
Member of the International 

Scientific Committee  
– AUTEX 2017

For more information 
please visit  

the official website
www.autex2017.org.


