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Abstract
Quaternary methyl di-ally ammonium salt (MDAA) was grafted on the surface of a poly-
propylene (PP) nonwoven using a low-temperature radio frequency discharge plasma. The 
graft ratio of MDAA to PP increased with the grafting temperature; at low grafting tem-
peratures (30 or 60 °C), the graft ratio increased with the H2SO4 catalyst concentration, 
but at a high grafting temperature (80 °C), it was not affected, even without the use of an 
acid catalyst. The finished PP nonwoven exhibited excellent antibacterial activities toward 
Staphylococcus aureus, suggesting that plasma grafting is an effective method.
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(oxirane group and π bond), and hence 
binding or coordination reaction is no 
longer required. Thus MDAA can readily 
impart functional properties to a PP non-
woven by plasma grafting. Furthermore 
it has quaternary ammonium groups 
that can provide antibacterial activity. 
The effects of the following on the graft 
ratio were determined: plasma discharge 
time, concentration of MDAA, grafting 
temperature, and grafting time. After 
the grafting, the hydrophilic and antibac-
terial properties of the finished PP fabric 
were evaluated as a function of the graft 
ratio. 

n Exprimental
Materials and synthesis of methyl di-
ally ammonium salt
Polypropylene (PP) nonwoven fabric 
with an average of 50 g/m2 and 0.15 mm 
thickness was used, supplied by Indus-
trial Technology Research Institute, Tai-
pei, Taiwan. MDAA was synthesised 
as  in our previous study [28], follow-
ing the method described by Topfl [27]. 
Its chemical structure is shown in Fig-
ure 1. Argon and oxygen gases (purity 
= 99.99%) were obtained from San Fu 
Gas Co., Ltd., Taiwan. Hydrochloric acid 
(37%, 1.2 g/ml) was a product of Sigma-
Aldrich, Steinheim, Germany. Sulfuric 
acid (98.08%, 1.834 g/ml) and nitric acid 

n Introduction
Polypropylene (PP) is cheap and has 
good mechanical properties. However, 
antimicrobial agents do not easily adhere 
to PP because it is hydrophobic and lacks 
functional groups. Its surface needs to 
be modified to make it antibacterial; it 
can then be used in various applications: 
packaging, textiles, and general-purpose 
filtration.

Many techniques for surface modifica-
tion have been reported: plasma, chemi-
cal, flame, corona, Co-γ-ray, and UV 
treatment [1 - 8]. Plasma is known to be 
the most efficient technique to enhance 
the adhesive [16] and hydrophilic [9] 
properties of polymers. Plasma modifica-
tion causes physical and chemical chang-
es on the polymer surface, but it is lim-
ited to a depth of a few microns [17]. In 
general, plasma treatments using either 
oxygen or argon as a carrier gas result 
in the production of oxygen-containing 
groups, whereas those using a nitrogen or 
ammonia carrier gas produce both nitro-
gen- and oxygen-containing groups [10 - 
14]. Chemical changes that occur during  
plasma treatment lead to the formation of 
reactive species that will readily bond on 
the polymer surface [11 - 15].

The graft polymerisation of a monomer 
onto PP is significant for its modifica-
tion [18 - 24]. Although plasma is an 
excellent polymer processing technique, 
the steps of grafting and binding require 
a long time to impart antibacterial [27] 
or biocompatible properties [27, 28]. 
In this study, methyl di-ally ammonium 
(MDAA) was synthesised as a grafting 
agent. It already has functional groups 
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Figure 1. Methyl di-ally ammonium salt.
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(≥ 90.09%, 1.48 g/ml) were supplied by 
Nihon Shiyaku Industries, Ltd., Osaka, 
Japan. All other chemical reagents were 
of technical grade.

Plasma treatment
Plasma treatments were conducted us-
ing Ar or O2 as a carrier gas with a flow 
rate of 50 ml/min. To treat the PP surface, 
we used a radio frequency (RF) plasma 
machine (Plasma Treatment System RF-
O-001, Helix Technology, Inc., Ltd., Tai-
wan), which involved a glow discharge 
with direct cold plasma (low tempera-
ture) [29]. Aluminum plates measuring 
22 × 38 cm2 were used as electrodes. 

The plasma power and discharge time 
ranged from 0 W to 400 W and from 
0.5 min to 10 min, respectively. The PP 
nonwoven was first treated with plasma. 
Then, for the grafting procedure, it was 
immediately placed in a three-necked 
flask containing a solution of MDAA 
(4 wt% or 10 wt%) and a catalyst (0 
to 0.5 M). The weight ratio of the PP 
nonwoven and the solution was 1:50. 
After that, the nonwoven was washed 
with a 0.1 wt% aqueous soap solution 
in a high-frequency ultrasonic tank for 
4 min, which was followed by rinsing 
with water and drying at 80 °C.

Graft ratio determination
The graft ratio, the amount of MDAA 
grafted onto the PP nonwoven, was de-
termined indirectly, which was based on 
the quantitative amount of nitrogen in 
% present in the sample, determined us-
ing  conventional Kjeldahl analysis [30]. 
About 0.5 g of the sample was digested 
with H2S04, together with a catalyst con-
taining 2.8% TiO2, 3.0% CuS04.5H2O, 
and 94.2 % K2SO4. The residue was 
treated with NaOH to liberate NH3, 
which was subsequently absorbed in 
boric acid and titrated with HCl. The to-
tal nitrogen bound was determined by 
oxidising and thermally decomposing it 
into NO2, which was then detected using 
an electrochemical detector. NO2 under-
went oxidation at the anode, causing a 
change in the current between the elec-

trodes proportional to the NO2 concentra-
tion. Analyses were made using at least 
triplicate samples to ensure reproducibil-
ity and exclude statistical errors.

Chemical structure analysis
The chemical structure of MDAA, pris-
tine PP, and grafted PP nonwoven at 
80 °C for 3 h  with Ar and O2 as carrier 
gas during plasma treatment (MDAA 
= 10%, H2SO4 = 0.2 M) was determined 
with Fourier transform infrared (FT-IR 
Spectrum One Perkin–Elmer, Perki-
nElmer, Co., Ltd., Shelton, CT). During 
each FT-IR measurement, 32 scans were 
made at a resolution of 1 cm-1. 

Chemical composition analysis
Electron spectroscopy for chemical 
analysis (ESCA) system (VG Scientific, 
ESCALAB 250, England) was employed 
to obtain the spectra of pristine PP, plas-
ma-treated PP, and MDAA-grafted PP 
nonwoven. A magnesium twin anode 
X-ray at a power of 300 W (15 kV) was 
used. The scan mode was for an area of 

Table 1. Quantitative nitrogen determina-
tion for grafted PP nonwoven at differ-
ent plasma power and discharge times.  
MDAA = 4%, H2SO4 = 0.03 M, grafting 
temperature - 30 °C for 3 h.

Power, W Time, min Nitrogen, % × 102

  50

1

0.17 ± 0.01
100 0.25 ± 0.02
150 0.23 ± 0.02
200 0.22 ± 0.01
250 0.20 ± 0.02
300 0.19 ± 0.02
400 0.17 ± 0.03

100

  0.5 0.18 ± 0.04
  1.0 0.25 ± 0.03
  2.5 0.35 ± 0.02
  5.0 0.32 ± 0.02
  7.5 0.31 ± 0.03
10.0 0.30 ± 0.02

Table 2. Comparison between Ar and O2 
carrier gas during plasma treatment. Con-
ditions: 100 W for 2.5 min, grafting tem-
perature - 80 °C for 3 h. (H2SO4 = 0.2 M).

MDAA, % Carrier gas Nitrogen, % × 102

4
O2 0.61 ± 0.03
Ar 0.53 ± 0.01

10
O2 0.86 ± 0.04
Ar 0.81 ± 0.02

Figure 2. Effect of grafting time on nitrogen content (graft ratio) for 
PP nonwoven treated at different grafting temperatures: -○- 30 °C; 
-D- 60 °C; -□- 80 °C. Error bars are based on standard deviation 
for three replicated measurements. Ar was used as a carrier gas 
during the plasma treatment; 100 W for 2.5 min. MDAA = 10%, 
without H2SO4.

Figure 3. Nitrogen content (graft ratio) vs. H2SO4 concentration 
for PP nonwoven treated for a grafting time of 1 h at different 
grafting temperatures: -○- 30 °C; -D- 60 °C; -□- 80 °C. Error bars 
are based on standard deviation for three replicated measurements. 
Ar was used as carrier gas during plasma treatment; 100 W for 
2.5 min. (MDAA = 10%).
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carrier gas, more peroxides or carbox-
ylic acid groups are introduced [31], and 
the higher nitrogen content is attributed 
to the presence of these.

Plasma grafting conditions
Figure 2 indicates data on the effect of 
grafting temperature and grafting time 
during the plasma grafting process. 
At 80 °C and 3 h, the nitrogen content 
(0.0081%) is highest, because MDAA 
easily diffuses into the PP nonwoven and 
grafts onto it at high temperatures and 
longer periods of time. During grafting, 

ma treatment may cause the MDAA to 
decompose or the PP surface structure to 
be damaged.

Use of carrier gas 
Data in Table 2 establish that O2 is a bet-
ter carrier gas than Ar during the PP 
plasma treatment. The nitrogen content 
is higher when O2 rather than Ar was 
used as the carrier gas, with the other 
plasma and grafting conditions the same. 
During the plasma treatment, the perox-
ides formed are mainly responsible for 
initiating the grafting. With O2 as the 

150 mm, and the PP nonwoven size was 
0.50 × 5 cm2. C1s, N1s, and O1s spectra 
were deconvoluted by fitting a Gaussian 
function to an experimental curve using 
a nonlinear, least-squares curve-fitting 
program, Origin Pro 7.5 (OriginLab Cor-
poration, Massachusetts, USA).

Test for anti-bacterial properties
A PP nonwoven with a surface area 
of 6.25 cm2 was placed on sterile Petri 
dishes. Inoculum suspensions with  
5.0 × 107 CFU/ml Staphylococcus aureus 
were prepared. The culture method was 
based on AATCC 100-1998 methodol-
ogy, a procedure for the qualitative de-
termination of the antibacterial activity 
of a textile material. All textile samples 
were inoculated with 0.1 ml suspension 
at 30 °C for different periods of time. 
The samples were collected after 0, 1, 3, 
5, and 7 h of PP nonwoven inoculation. 
Then the PP nonwoven was transferred 
to a sterile physiological saline solution, 
and the microorganisms were shaken and 
washed for 15 minutes in an aqueous bath. 
After that, the suspension of bacteria was 
diluted with a sterile physiological sa-
line solution and inoculated on a sterile 
Petri plate. Each PP nonwoven was im-
mersed and mixed in a semi-liquid cul-
ture medium. This mixture was allowed 
to stand for equilibration. The inoculated 
plates were then incubated at 30 °C for 
24 h. Finall, all the colonies grown were 
counted. The antibacterial ratio is defined 
as [(Ma - Mb)/Ma] × 100%, where Ma 
is the original number of bacteria on the 
PP nonwoven and Mb is the number of 
bacteria after  nourishment for a specific 
time.

Contact angle measurement
Contact angles (CAs) were measured 
with a FACE instrument (model CA-
VP150) using deionised water at room 
temperature. The CA for each PP nonwo-
ven was the average  values from 3 to 4 
water drops. 

n Results and discussion 
Optimum plasma power and 
discharge time
Table 1 indicates that the optimum plas-
ma power is 100 W, at which the opti-
mum plasma treatment time is 2.5 min; 
these values are based on the highest 
nitrogen content while keeping the other 
plasma and grafting conditions constant. 
When the plasma power is higher than 
100 W, the high energy during the plas-

Figure 4. Effect of 
MDAA concentra-
tion on nitrogen 
content (graft ra-
tio) for PP non-
woven at a graft-
ing temperature of 
80 °C for 2 h. Error 
bars are based on 
standard deviation 
for three replicated 
measurements. Ar 
was used as car-
rier gas during 
plasma treatment; 
100 W for 2.5 min.  
H2SO4 = 0.2 M.

Figure 5. FT-IR spectra of (a) pristine PP, (b) MDAA, (c) grafted PP with Ar as carrier gas 
during plasma treatment, and (d) grafted PP with O2 as carrier gas during plasma treat-
ment. MDAA=10%, H2SO4 = 0.2 M, grafting temperature - 80 °C for 3 h.
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the chain mobility of the PP matrix in-
creases with the temperature. Therefore 
MDAA reacts with PP more effectively 
at 80 °C than at 60 °C or 30 °C.

Figure 3 shows the effect of the graft-
ing temperature and H2SO4 catalyst 
concentration on the graft ratio. At lower 
temperatures of 30 °C and 60 °C, vary-
ing the catalyst concentration tends to af-
fect the nitrogen content; but at a higher 
temperature of 80 °C, even without using 
a catalyst, the nitrogen content is not af-
fected. This result is caused by the oxida-
tion/degradation of the PP polymer chain 
after the plasma treatment [32]. Therefore  
MDAA is possible to be grafted onto the 
PP nonwoven even without the H2SO4 

catalyst, especially at a high temperature; 
the same is true at low temperatures, al-
though the graft ratio is very low.

MDAA concentration during plasma 
grafting
Figure 4 shows the effect of MDAA 
concentration during plasma grafting 
at 80 °C. The graft ratio is 0.64 when 
the MDAA concentration is 5%, but 
it becomes nearly constant at 0.81 for 
MDAA concentrations higher than 10%.

Chemical structure analysis
Figure 5 shows the spectra of pristine PP 
nonwoven, MDAA, and grafted PP non-
woven during the plasma treatment using 

O2 or Ar as the carrier gas. For  pristine 
PP, two distinguished absorption bands 
at 2918/2833 and 1453 cm-1 correspond 
to C-H aliphatic stretching and C-H ali-
phatic bending. The MDAA spectrum in-
dicates interesting and important absorp-
tion bands at 3440, 1062, and 961 cm-1, 
corresponding to O-H stretching vibra-
tions, oxirane ring C-O-H stretching vi-
brations, and C-O-C asymmetrical de-
formation bands. Similar characteristic 
absorption peaks are indicated for PP 
fabrics grafted with O2 or Ar as the car-
rier gas; the absorption bands centered 
at 3372, 2934, 1451, and 1183 cm-1 cor-
respond to O-H stretching vibrations, 
C-H stretching vibrations, C-H bending 
vibrations, and aliphatic ether (C-O-C), 
respectively. These characteristic peaks 
were also observed by other studies [29, 
34 - 36].

The absorption bands of C-H aliphatic 
stretching and aliphatic bending shown in 
the pristine PP spectrum all disappeared 
after the grafting process. The following 
disappeared as well: absorption bands 
at 3092 and 3005 cm-1, corresponding 
to C-H stretching vibration for olefinic 
C-H stretching vibrations of MDAA. 
The peak at 1644 cm-1 for C=C stretch-
ing vibrations is weak. The absorption 
bands at 256 and 961 cm-1 for oxirane 
ring disappeared. Those peaks that disap-
peared were replaced by new absorption 
bands at 2934, 1451, and 1183 cm-1, cor-
responding to C-H stretching vibration, 
aliphatic ether, and aliphatic alcohol, re-
spectively.

After the plasma grafting at a high tem-
perature of 80 °C, some characteristic 
absorption peaks (2918 and 2833 cm-1) 
of the PP nonwoven disappeared, dem-

Figure 6. ESCA analysis of surface properties for pristine PP and grafted PP with Ar as 
carrier gas during plasma treatment. MDAA = 10%, H2SO4 = 0.2 M, grafting temperature 
- 80 °C for 3 h.
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is better than  Ar. Results in Tables 3 and 
4 illustrate that with a higher graft ratio, 
the PP nonwoven demonstrates good 
antimicrobial properties, as the colony 
forming units decrease significantly.

Contact angle measurement
Contact angle data for the PP nonwoven 
are shown in Figure 9 (see page 122). 
The pristine PP’s contact angle ranges 
from 87.7° to 89.4°. For the PP nonwo-
ven treated by O2 plasma, the contact an-
gle is 90° to 71.3°. Generally O2 plasma 
treatment initially brings the contact an-
gle to hydrophilic values (≤ 80°). Vesel 
and Mozetic [42] reported on the surface 
modification of various polymers with 
O2 plasma. O2 was detected on the poly-
mer surface, associated with C-O, C=O 
and O=C-O groups on the surface. For 
the PP nonwoven treated by Ar plas-
ma, the contact angle is 89.8° to 78.7°, 
which is a bit higher compared with  O2 
plasma treatment, but lower compared 
with the pristine PP nonwoven. Jong-Il 
Weon [43] indicated that  PP grafted us-
ing Ar plasma presents new functional 

aliphatic secondary or primary alcohol, 
and then it reacted with the O-H group 
of PP to produce C-O-C aliphatic ether 
(1183 cm-1). 

Figure 6 shows ESCA analysis at high-
er binding energies for  pristine PP and 
grafted PP. It illustrates the -CH2-N+ 
structure at 402.2 eV, a finding similar to 
that in [40, 41]. On the basis of the dis-
cussion of FTIR and ESCA results above, 
we proposed mechanisms of plasma 
grafting (Figure 7). Three possible graft-
ing reactions from the functional groups 
of vinyl and epoxy are indicated.

Test for antibacterial properties
Table 3 shows the antibacterial proper-
ties of  pristine PP and plasma-treated PP 
nonwoven. Figure 8 shows the antibac-
terial activity for the PP nonwoven; data 
on grafting with 4% and 10% MDAA are 
given in Figures 8.a and 8.b, respective-
ly. From the antibacterial properties in 
Table 4, it is indicated that the use of O2 
as a carrier gas for the plasma treatment 

onstrating that PP was decomposed by 
the H2SO4 catalyst. The oxirane ring of 
MDAA was opened to aliphatic second-
ary or primary alcohol, and then it re-
acted with PP to produce C-O-C aliphatic 
ether (1183 cm-1). 

After the plasma treatment, the PP sur-
face was activated, and C-O-O-H and 
O-H polar groups were produced [38, 
39]. During plasma grafting, ether and 
alcohol groups were formed, which is 
consistent with that of the FT-IR analy-
sis. In the structure of the grafted PP, 
the C-H stretching vibration disap-
peared. In the MDAA structure, olefinic 
C-H stretching vibrations (3092 cm-1) 

and C=C stretching vibrations (1644 
cm-1) disappeared as well. These peaks 
that disappeared were replaced by new 
ones of aliphatic ether (2934 cm-1) and 
aliphatic secondary or primary alcohol  
(1183 cm-1), which is due to the degra-
dation of the PP nonwoven caused by 
the H2SO4 catalyst during the plasma 
grafting process at 80 °C. The oxirane 
ring of MDAA was opened to produce 

Figure 8. Antibacterial activity for PP nonwoven: (a) grafting with 4% MDAA, (b) grafting with 10% MDAA. (-●- without treatment; 
-D- grafted PP with Ar as carrier gas during plasma treatment; ---D--- grafted PP with O2 as carrier gas during plasma treatment).  
(H2SO4 = 0.2 M, grafting temperature - 80 °C for 3 h)

Table 3. Antibacterial properties of pristine PP and grafted PP. H2SO4 = 0.2 M, grafting temperature - 80 °C for 3 h.

Process MDAA, % Carrier gas
CFU/ml × 10-4 Antibacterial ratio (%)
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