- meability. Fibres & Textiles in Eastern Europe 2012; 20, 5(94): 66-69.
- Parmar MS. An unconventional way to incorporate comfortin knitted fabrics. Indian Journal of Fiber and Textile and Research 1999: 24: 41–44.
- Sharma IC, Mukhopadhyay D, Agarwal BR. Feasibility of Single jersey Fabric from open-end Spun Blended Yarn. Textile Research Journal 1986; 56(4): 249.
- Choi Mee-Sung, Ashdown SP. Effect of Changes in knit structure and density on the mechanical and hand properties of weft knitted fabrics for outwear. *Textile Research Journal* 2000; 70, 12: 1033-45.
- 5. Li Y. The Science of clothing comfort. *Textile Progress* 2001; 31(1/2): 1-135.
- Slah M, Amine HT, Faouzi S. A new approach for predicting the knit global quality by using the desirability function and neural networks. *Journal of Textile Institute* 2006; 97, 1: 17–23. DOI: 10.1533/joti.2005.0157.
- Demiroz Gun A, Unal C, Unal BT. Dimensional and physical properties of plain knitted fabrics made from 50/50 bamboo/cotton blended yarns. Fibers and Polymers 2008; 9, 5: 588-592.
- Oglakcioglu N, Celik P, Ute TB, Marmarali A, Kadoglu A. Thermal comfort properties of angora rabbit/ cotton fiber blended knitted fabrics. *Textile Research Journal* 2009; 79: 888-894.

- Bivainyte A, Mikucioniene D. Investigation on the Air and Water Vapour Permeability of Double-Layered Weft Knitted Fabrics. Fibres & Textiles in Eastern Europe 2011; 19, 3(86): 69-73.
- Emirhanova N, Kavusturan Y. Effects of Knit Structure on the Dimensional and Physical Properties of Winter Outwear Knitted Fabrics. Fibres & Textiles in Eastern Europe 2008; 16, 2 (67): 69–74.
- Kane CD, Patil UJ, Sudhakar P. Studies on the Influence of Knit Structure and Stitch Length on Ring and Compact Yarn Single Jersey Fabric Properties. Textile Research Journal 2007; 77(8): 572-588.
- Prakash C, Ramakrishnan G. Effect of blend proportion on thermal behaviour of bamboo knitted fabrics. *The Journal* of the Textile Institute 2013; 14, 9: 907-913.
- 13. TS EN ISO 139, 2008. Textiles Standard atmospheres for conditioning and testing.
- 14. EN ISO 2062, 2010. Textiles Yarns from packages - Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester.
- TS EN 14971, 2006. Textiles Knitted fabrics - Determination of number of stitches per unit length and unit area.
- 16. TS EN 14970, 2006. Textiles Knitted fabrics Determination of stitch length

- and yarn linear density in weft knitted fabrics.
- 17. TS EN ISO 12127, 1999. Textiles-Fabrics- Determination of mass per unit area using small samples.
- EN ISO 5084, 1998. Textiles-Determination of thickness of textiles and textile porducts.
- EN ISO 9237, 1999. Textiles-Determination of permeability of fabrics to air.
- BS 7209, 1990. Textiles Measurement of water vapour permeability of textiles. TS
- 21. EN ISO 13938-2, 1999. Textiles-Bursting Properties of Fabrics, Part 2, Pneumatic method for determination of bursting strength and bursting distention.
- 22. Mikucioniene D, Ciukas R, Mickeviciene A. *Materials Science (Medziagotyra)* 2010; 16, 3: 221-225.
- 23. Skenderi Z, Cubric IS, SrdjakM. Water vapour resistance of knitted fabrics under different environmental conditions. Fibres & Textiles in Eastern Europe 2009; 17, 2(73): 72-75.
- 24. Wang F, Zhou X, Wang S. Development Processes and Property Measurements of Moisture Absorption and Quick Dry Fabrics. Fibres & textiles in Eastern Europe 2009; 17, 2(73): 46-49.
- Received 26.09.2014 Reviewed 12.02.2015

INSTITUTE OF BIOPOLYMERS AND CHEMICAL FIBRES

LABORATORY OF METROLOGY

Contact: Beata Pałys M.Sc. Eng. ul. M. Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland tel. (+48 42) 638 03 41, e-mail: metrologia@ibwch.lodz.pl

The **Laboratory** is active in testing fibres, yarns, textiles and medical products. The usability and physico-mechanical properties of textiles and medical products are tested in accordance with European EN, International ISO and Polish PN standards.

AB 388

Tests within the accreditation procedure:

■ linear density of fibres and yarns, ■ mass per unit area using small samples, ■ elasticity of yarns, ■ breaking force and elongation of fibres, yarns and medical products, ■ loop tenacity of fibres and yarns, ■ bending length and specific flexural rigidity of textile and medical products

Other tests:

- for fibres: diameter of fibres, staple length and its distribution of fibres, linear shrinkage of fibres, elasticity and initial modulus of drawn fibres, crimp index, tenacity
- **for yarn: ■** yarn twist, **■** contractility of multifilament yarns, **■** tenacity,
- for textiles: mass per unit area using small samples, thickness
- for films: thickness-mechanical scanning method, mechanical properties under static tension
- for medical products: determination of the compressive strength of skull bones, determination of breaking strength and elongation at break, suture retention strength of medical products, perforation strength and dislocation at perforation

The Laboratory of Metrology carries out analyses for:

■ research and development work, ■ consultancy and expertise

Main equipment:

■ Instron tensile testing machines, ■ electrical capacitance tester for the determination of linear density unevenness - Uster type C, ■ lanameter