- Żurek W, Kopias K. Struktura płaskich wyrobów włókienniczych. Ed. WNT, Warsaw, 1983, p. 272.
- Dalidovicz AS. Osnowy teori wiazania. Ed. Liogkaja Industria, Moscow, 1970, p. 432.
- Mikołajczyk Z. Identification of the process of knitting of the warp-knitted anisotropic structures on warp-knitting machines (in Polish), Scientific Letters TUL 2009, Nr 1047, Dissertation z. 381, p. 234.
- Helbig F. New dimensions for functional, regular 3D knitting. *Melliand English* 2006; 10: 153-155.
- Helbig F. Geometrische Elemente regulärer 3D-Gewirke. *Melliand Textilberichte* 2007; 3: 124-127.
- Zhang L-Z, Jiang G-M, Miao X-H, Cong H-L. Three-dimensional Computer Simulation of Warp Knitted Spacer Fabric. *Fibres & Textiles in Eastern Europe* 2012; 20, 3(92): 56-60.
- Kowalski K, Włodarczyk B. Modification of External Layers of Distance Knitted Fabrics with Elastomeric Threads and Its Effect on the Structural Parameters. *Fibres & Textiles in Eastern Europe* 2012; 20, 4(93): 62-66.
- Mikołajczyk Z, Pieklak K, Golczyk A, Wiater Z. Spatial knitted product, patent application from 12.09.2008, P – 386074.
- Mikołajczyk Z, Pieklak K, Golczyk A, Wiater Z. Spatial warp-knitted product, patent application from 12.09.2008, P – 386075.
- Pieklak K, Mikołajczyk Z. New Generation of Structures in Warp-Knitted Distance Fabrics. In: *AUTEX International Conference 2009*, 26 – 28 May 2009, CESME – Turkey.
- Mikołajczyk Z, Pieklak K. Innovative Structures and Technology of Spatial Warp-Knitted Fabrics. In: 45th International Federation of Knitting Technologists IFKT, 27 – 29 May 2010, Ljubljana, Slovenia.
- Neue Software für dreidimensionale Legungsdarstellung und – simulation. *Melliand Textilberichte* 2008; 11-12: 456 – 457.
- 14. Kyosev Y, Rahjens A, Renkens W. How clear is the boundary between reality and simulation? – Virtual and real warpknitted – a comparative study between 3D simulation and actual fabrics. *Kettenwirk-Praxis* 2009; 4: 40 – 42.
- ProCad warpknit Version 5- more than just 3D cinema for product developers

 A new generation of software for simulating textiles in product development. *Kettenwirk-Praxis* 2010; 4: 34 – 35.
- Pieklak K, Mikołajczyk Z. Architecture Designing of Warp-Knitted Fabrics. In: XV Scientific Conference of the Faculty of Material Technologies and Textile Design at the Lodz University of Technology, Łódź, 2012, p. 4.

Received 05.09.2011 Reviewed 15.05.2013

INSTITUTE OF BIOPOLYMERS AND CHEMICAL FIBRES

LABORATORY OF PAPER QUALITY

Since 02.07.1996 the Laboratory has had the accreditation certificate of the Polish Centre for Accreditation No AB 065.

The accreditation includes tests of more than 70 properties and factors carried out for:

- pulps
- tissue, paper & board,
- cores,
- transport packaging,
- auxiliary agents, waste, wastewater and process water in the pulp and paper industry.

The Laboratory offers services within the scope of testing the following: raw -materials, intermediate and final paper products, as well as training activities.

Properties tested:

- general (dimensions, squareness, grammage, thickness, fibre furnish analysis, etc.),
- Chemical (pH, ash content, formaldehyde, metals, kappa number, etc.),
- surface (smoothness, roughness, degree of dusting, sizing and picking of a surface),
- absorption, permeability (air permeability, grease permeability, water absorption, oil absorption) and deformation,
- optical (brightness ISO, whitness CIE, opacity, colour),
- tensile, bursting, tearing, and bending strength, etc.,
- compression strength of corrugated containers, vertical impact testing by dropping, horizontal impact testing, vibration testing, testing corrugated containers for signs "B" and "UN".

The equipment consists:

- micrometers (thickness), tensile testing machines (Alwetron), Mullens (bursting strength), Elmendorf (tearing resistance), Bekk, Bendtsen, PPS (smoothness/roughness), Gurley, Bendtsen, Schopper (air permeance), Cobb (water absorptiveness), etc.,
- crush tester (RCT, CMT, CCT, ECT, FCT), SCT, Taber and Lorentzen&Wettre (bending 2-point method) Lorentzen&Wettre (bending 4-point metod and stiffness rezonanse method), Scott-Bond (internal bond strength), etc.,
- IGT (printing properties) and L&W Elrepho (optical properties), ect.,
- power-driven press, fall apparatus, incline plane tester, vibration table (specialized equipment for testing strength transport packages),
- atomic absorption spectrmeter for the determination of trace element content, pH-meter, spectrophotometer UV-Vis.

Contact:

INSTITUTE OF BIOPOLYMERS AND CHEMICAL FIBRES ul. M. Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland Elżbieta Baranek Dr eng. mech., tel. (+48 42) 638 03 31, e-mail: elabaranek@ibwch.lodz.pl