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 Introduction

The modelling was carried out with the 
aim of finding the optimum procedure
which would facilitate in solving the 
problem of 3D distance knitted fabric 
compression. The process of compress-
ing such a fabric is accompanied by a 
number of physical, particularly mechan-
ical phenomena, such as the bending of 
the connectors, which form the knitted 
fabric’s structure, and the mutual interac-
tion of the friction between neighbour-
ing connectors, among others. Designing 
a distance knitted fabric which would 
fulfil the demands of its future user is a
complex procedure. Irrespective of the 
shape of such a fabric, described by its 
geometry, it should fulfil a number of
usability requirements, including suf-
ficient, mainly high strength, and resist-
ance to the action of external forces. An 
analysis of literature carried out by us 
concerning the structure and mechani-
cal properties of 3D knitted fabrics and 
the modelling of their strength behaviour 
led to the conclusion that the problems 
of modelling the compression of such 
fabrics have hitherto not been described. 
Therefore, developing a model descrip-
tion of the fabric’s compression process 
will create the possibility of designing 
distance fabrics of assumed elasticity 
without the need to manufacture a proto-
type. The designing process concerning 
geometric and technological aspects will 
be completed by selecting an appropri-
ate material, and next manufacturing the 
fabric with the use of a suitable knitting 
machine without the need to carry out 
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initial experimental stages. Such a pro-
cedure will allow to significantly shorten
the designing time of 3D distance knitted 
fabric.

 Assumptions of the model
The object compressed, which is a 3D 
distance knitted fabric, is considered as 
two rigid planes connected by a network 
of rods which form an elastic spatial 
trust. The shape of this trust depends on 
the knitted structure of the stitches, as 
well as on the mechanical properties of 
the threads which form the structure [1]. 
Modelling th compression process of the 
knitted fabric was performed during the 
first stage’ of the ivestigation, assum-
ing a single connector comprising a rod 
joining the outside layers of the knitted 
fabric.

The rod compressed we considered as 
placed in the xyz co-ordinate system, and 
to facilitate the analysis of the phenom-
enon, we mentally divided the rod – con-
nector into two rods consisting of its 
projections on the perpendicular planes 
0xz and 0xy, which are the planes of two 
cross-sections of the knitted fabric (Fig-
ure 1).

The outside planes, p1 and p2, of the knit-
ted fabric are composed of single loops or 
loops connected into loop systems. The 
loops consist of single systems of the out-
side planes p1 and p2. We consider them 
as basic elements of the planes’ structure 
with a dimension of A × B, where B is 
the width of the wale, and B is the height 
of the course. The segments do not de-
form, which means that A = constant and 
B = constant. The loops of the model 

Figure 1. 3D distance knitted fabric; a) design of the fabric, b) photograph of the cross-
section of a 3D distance knitted fabric. 

a) b)
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planes are connected by articulated ball 
joints (Figure 2).

From a mechanical point of view, we 
consider the planes as shells which are 
susceptible to deflection and non-suscep-
tible to stretching. For such a model of 
the planes p1 and p2 accepted by us, only 
small and insignificant bending moments
occur (Mg ≅ 0) at the points of loop joints. 
Only the mutual influence of neighbour-
ing elements, e.g. of loops, occurs due to 
the reaction forces (F1) in the articulated 
joints, which act on the surface of the 
shell.

In the case of the compression process of 
3D distance knitted fabric, in order to ac-
cept a uniformly distributed load caused 
by the unit forces Pi acting on the singu-
lar loop segments, we assume that this 
is equivalent to the impact of a singular 

force P acting at the midpoint of the sur-
face of the rigid plane p1 (Figure 3).

The following dependency connects the 
unit forces Pi with the summary force P:

P = ∑ · Pi

where: m – is the number of loops closed 
by the surface of plane p1.

The structural model of the plane accept-
ed by us may be related to the process 
of compressing the distance knitted fab-
ric with the use of a tensile tester. In this 
case, the rigid dished disks connected 
to the measuring head of a tensile tester 
perform the compression process of the 
sample investigated.

The physical model of compressing a 
slender, elastic rod in a single plane, 0xz 
or 0xy, is based on the following assump-
tions:
 the planes of the knitted fabric are dis-

placed in the transversal direction,
 the loading by force P acts in a direc-

tion perpendicular to the planes of the 
knitted fabric,

 the connectors are considered as elastic 
rods whose structure has a spatial con-
figuration, as well as elements fastened
by an articulated joint to the outside sur-
faces of the knitted fabric at both ends,

 the connectors which belong to a sin-
gle loop are joined at a single point, 
the planes p1 and p2 are not deformed 
(this is a simplifying assumption of 
our analysis, as the connector consid-
ered presents a whole set of connec-
tors the fact that the knitted distance 
fabric analysed). In the event that 
such an assumption would not be ac-
cepted, irrespective of all the connec-
tor loads acting are of the same value, 
the connectors would be characterised 
by different deflections, which in turn
would complicate the considerations. 
An analysis taking into account loads 
causing irregular connector deflec-
tions will be the subject of our future 
works and publications;

 in the preliminary stage of the com-
pression process, the rods retain the 
assumed shape, and next, with an in-
creasing force P1 , a transversal force 
S1 of the base reaction appears,

 such factors as temperature and hu-
midity do not influence the proceed-
ing of the deformation process of the 
knitted fabric.

In a further analysis of the mathematical 
model based on the physical model, the 

Figure 2. Physical model of the outside 
planes of the 3D knitted fabric.

Figure 3. Equivalent load of the planes of 
the 3D distance knitted fabric.

Figure 4. Fastening scheme of the physical 
object – a bent elastic rod.

connector is considered as a slender rod 
with an assumed shape, which is affected 
by the bending process. The assumed 
shape is obtained by accepting the thick-
ness g0 of the knitted fabric at which the 
deflection value ∆g takes the zero value,
and the mutual displacement y0 of the 
rod’s end in the direction perpendicular 
to the deflection, as well as the assumed
length lp of the rod. The rod is considered 
in a free state (not loaded) and takes such 
a shape that its potential energy will be 
the smallest.

 Physical model of the 
compression process

Taking into consideration all aspects re-
lated to the structure of the 3D distance 
knitted fabric, as well as the behaviour 
of this fabric under the influence of loads
acting on the fabric, and on the basis of 
the assumptions mentioned in the previ-
ous chapter, below is presented a physi-
cal model of a slender, elastic rod of as-
sumed shape. The general assumption is 
that the rods are fastened at both ends by 
articulated joints.

As far as compressed rods are con-
cerned, the model discussed is related 
to the Euler’s theory, the difference be-
ing that our assumption, confirmed em-
pirically, considers the rod as a slender 
object with assumed preliminary shape; 
what connects is existing of additional 
forces S1 that occur during the com-
pression process, which are caused by 
the reaction of the base i.e., the reaction 
of the outside layers of the knotted fab-
ric [2-5]. Figure 4 presents a scheme 
of the mechanical model in the form 
of a rod mentally liberated from con-
straints; this presents the outside planes 
of the knitted fabric, whose action was 
substituted by the forces P1 and S1, and 
their motion is limited by both the im-
movable and slidable articulated joints. 
The following designations are marked 
in Figure 4:
g0 – initial thickness of the knitted 

fabric,
gi – thickness of the fabric during 

compression,
∆g – deflection of the knitted fabric,
p1, p2 – planes in which the knitted fab-

ric’s loops are placed,
y0 – horizontal displacement of the 

rod’s fastening points,
P1 – force compressing the bent rod, 

and
S1 – transversal force of the base’s re-

action.
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 Mathematical model of the 
compression process of a 
single connector

The physical model presented above ena-
bles to formulate parametrical, functional 
as well as normal differential equations 
of the fourth order, which interrelate the 
load of the rod with its deformations. The 
rod-connector is considered and accepted 
by us as two individual rods which are 
the projections of the rod on the 0xz and 
0yz planes.

The differential equation which describes 
deformations of the rod influenced by the
loads has the following form:

g0 –  initial thickness of the knitted fabric, 
gi – thickness of the fabric during compression, 
∆g – deflection of the knitted fabric, 
p1, p2 – planes in which the knitted fabric’s loops are placed, 
y0 -  horizontal displacement of the rod’s fastening points, 
P1 – force compressing the bent rod, and 
S1 – transversal force of the base’s reaction. 

Figure 5. Fastening scheme of the physical object – a bent elastic rod . 

Mathematical model of the compression process of a single connector 
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as normal differential equations of the fourth order, which interrelate the load of the rod 
with its deformations. The rod-connector is considered and accepted by us as two 
individual rods which are the projections of the rod  on the 0xz and 0yz planes. 

The differential equation which describes  deformations of the rod influenced by the loads 
has the following form: 
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where:
y0 (x), and y1 (x) are the initial buckling, and the buckling occurring as result of the force 
P1 action, respectively; 
S1  - is the reaction force  of the transversal, sliding support, 
E - is the Young modulus, and
J - is the modulus of inertia of the bent object’s cross-section. 

Differentiating  equation (1) twice towards ‘x’, we  subsequently obtain: 
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The integration constants C11, C21, C31, 
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The integration constants C11, C21, C31, and C41 obtained from the equation system are 
relatively equal: 
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For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41

determined from  equation system (3) into the condition that describes the length of the 
curved rod, which does not changing during processing. Finally, we obtain the following 
expression:
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Determining the deflection ∆g consists in substituting each  value of force P1, considered 
as a parameter, into  equation (4) and drawing the curves of the function: 
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where: n = 100 is the number of parts into which the interval of the function variability (2) 
is divied, which is accepted using intuition by the authors as giving sufficient accuracy to 
the calculation. The greater the value ‘n’, the greater  the accuracy of the calculations is,  
but at the same time this way significantly increases the calculation time used by the 
computer program. 

The value of ∆g, which is related to point ‘A’ (the point where the function charts cross), 
we read from the x-axis (see Figure 6). This is a graphical solution of the equation system 
(5 and 6). It should be stressed that it is impossible to obtain a point (gi, P1) directly from 
equation (4) as a great number of solutions of this equation exists. The solution of this 
equation may be found only graphically. The reason for this is also that a symmetrical 
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For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41

determined from  equation system (3) into the condition that describes the length of the 
curved rod, which does not changing during processing. Finally, we obtain the following 
expression:
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Determining the deflection ∆g consists in substituting each  value of force P1, considered 
as a parameter, into  equation (4) and drawing the curves of the function: 
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and 1( , )i pf P g l=  (6) 

where: n = 100 is the number of parts into which the interval of the function variability (2) 
is divied, which is accepted using intuition by the authors as giving sufficient accuracy to 
the calculation. The greater the value ‘n’, the greater  the accuracy of the calculations is,  
but at the same time this way significantly increases the calculation time used by the 
computer program. 

The value of ∆g, which is related to point ‘A’ (the point where the function charts cross), 
we read from the x-axis (see Figure 6). This is a graphical solution of the equation system 
(5 and 6). It should be stressed that it is impossible to obtain a point (gi, P1) directly from 
equation (4) as a great number of solutions of this equation exists. The solution of this 
equation may be found only graphically. The reason for this is also that a symmetrical 
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For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41

determined from  equation system (3) into the condition that describes the length of the 
curved rod, which does not changing during processing. Finally, we obtain the following 
expression:
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Determining the deflection ∆g consists in substituting each  value of force P1, considered 
as a parameter, into  equation (4) and drawing the curves of the function: 
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and 1( , )i pf P g l=  (6) 

where: n = 100 is the number of parts into which the interval of the function variability (2) 
is divied, which is accepted using intuition by the authors as giving sufficient accuracy to 
the calculation. The greater the value ‘n’, the greater  the accuracy of the calculations is,  
but at the same time this way significantly increases the calculation time used by the 
computer program. 

The value of ∆g, which is related to point ‘A’ (the point where the function charts cross), 
we read from the x-axis (see Figure 6). This is a graphical solution of the equation system 
(5 and 6). It should be stressed that it is impossible to obtain a point (gi, P1) directly from 
equation (4) as a great number of solutions of this equation exists. The solution of this 
equation may be found only graphically. The reason for this is also that a symmetrical 
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For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41

determined from  equation system (3) into the condition that describes the length of the 
curved rod, which does not changing during processing. Finally, we obtain the following 
expression:
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Determining the deflection ∆g consists in substituting each  value of force P1, considered 
as a parameter, into  equation (4) and drawing the curves of the function: 
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and 1( , )i pf P g l=  (6) 

where: n = 100 is the number of parts into which the interval of the function variability (2) 
is divied, which is accepted using intuition by the authors as giving sufficient accuracy to 
the calculation. The greater the value ‘n’, the greater  the accuracy of the calculations is,  
but at the same time this way significantly increases the calculation time used by the 
computer program. 

The value of ∆g, which is related to point ‘A’ (the point where the function charts cross), 
we read from the x-axis (see Figure 6). This is a graphical solution of the equation system 
(5 and 6). It should be stressed that it is impossible to obtain a point (gi, P1) directly from 
equation (4) as a great number of solutions of this equation exists. The solution of this 
equation may be found only graphically. The reason for this is also that a symmetrical 
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For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41

determined from  equation system (3) into the condition that describes the length of the 
curved rod, which does not changing during processing. Finally, we obtain the following 
expression:
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Determining the deflection ∆g consists in substituting each  value of force P1, considered 
as a parameter, into  equation (4) and drawing the curves of the function: 
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and 1( , )i pf P g l=  (6) 

where: n = 100 is the number of parts into which the interval of the function variability (2) 
is divied, which is accepted using intuition by the authors as giving sufficient accuracy to 
the calculation. The greater the value ‘n’, the greater  the accuracy of the calculations is,  
but at the same time this way significantly increases the calculation time used by the 
computer program. 

The value of ∆g, which is related to point ‘A’ (the point where the function charts cross), 
we read from the x-axis (see Figure 6). This is a graphical solution of the equation system 
(5 and 6). It should be stressed that it is impossible to obtain a point (gi, P1) directly from 
equation (4) as a great number of solutions of this equation exists. The solution of this 
equation may be found only graphically. The reason for this is also that a symmetrical 
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For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41

determined from  equation system (3) into the condition that describes the length of the 
curved rod, which does not changing during processing. Finally, we obtain the following 
expression:
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Determining the deflection ∆g consists in substituting each  value of force P1, considered 
as a parameter, into  equation (4) and drawing the curves of the function: 
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where: n = 100 is the number of parts into which the interval of the function variability (2) 
is divied, which is accepted using intuition by the authors as giving sufficient accuracy to 
the calculation. The greater the value ‘n’, the greater  the accuracy of the calculations is,  
but at the same time this way significantly increases the calculation time used by the 
computer program. 

The value of ∆g, which is related to point ‘A’ (the point where the function charts cross), 
we read from the x-axis (see Figure 6). This is a graphical solution of the equation system 
(5 and 6). It should be stressed that it is impossible to obtain a point (gi, P1) directly from 
equation (4) as a great number of solutions of this equation exists. The solution of this 
equation may be found only graphically. The reason for this is also that a symmetrical 
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see page 80). This is a graphical solu-
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The integration constants C11, C21, C31, and C41 obtained from the equation system are 
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For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41

determined from  equation system (3) into the condition that describes the length of the 
curved rod, which does not changing during processing. Finally, we obtain the following 
expression:
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Determining the deflection ∆g consists in substituting each  value of force P1, considered 
as a parameter, into  equation (4) and drawing the curves of the function: 
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where: n = 100 is the number of parts into which the interval of the function variability (2) 
is divied, which is accepted using intuition by the authors as giving sufficient accuracy to 
the calculation. The greater the value ‘n’, the greater  the accuracy of the calculations is,  
but at the same time this way significantly increases the calculation time used by the 
computer program. 

The value of ∆g, which is related to point ‘A’ (the point where the function charts cross), 
we read from the x-axis (see Figure 6). This is a graphical solution of the equation system 
(5 and 6). It should be stressed that it is impossible to obtain a point (gi, P1) directly from 
equation (4) as a great number of solutions of this equation exists. The solution of this 
equation may be found only graphically. The reason for this is also that a symmetrical 
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For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41

determined from  equation system (3) into the condition that describes the length of the 
curved rod, which does not changing during processing. Finally, we obtain the following 
expression:
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Determining the deflection ∆g consists in substituting each  value of force P1, considered 
as a parameter, into  equation (4) and drawing the curves of the function: 
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where: n = 100 is the number of parts into which the interval of the function variability (2) 
is divied, which is accepted using intuition by the authors as giving sufficient accuracy to 
the calculation. The greater the value ‘n’, the greater  the accuracy of the calculations is,  
but at the same time this way significantly increases the calculation time used by the 
computer program. 

The value of ∆g, which is related to point ‘A’ (the point where the function charts cross), 
we read from the x-axis (see Figure 6). This is a graphical solution of the equation system 
(5 and 6). It should be stressed that it is impossible to obtain a point (gi, P1) directly from 
equation (4) as a great number of solutions of this equation exists. The solution of this 
equation may be found only graphically. The reason for this is also that a symmetrical 

 (4)

The integration constants C11, C21, C31, and C41 we determine from the boundary 
conditions:

0 11 41 0

3 31 0 1 0
1 31 1 1 41 1 1

11 21 31 1 41 1

2 2
31 1 1 41 1 1 41

(0)

( ) cos( ) sin( )

( ) 0 sin( ) cos( ) 0

(0) 0 sin( ) cos( ) 0 0

i
i i

i i i i

y y C C y
P y P yy g S C k k x C k k x

g g
y g C C g C k g C k g
y C k k x C k k x C

= − → + = −

′′′ = = → − + =

= → + + + =
′′ = → − − = → =

                                         (3) 

The integration constants C11, C21, C31, and C41 obtained from the equation system are 
relatively equal: 

11 0C y= −  (3.a) 

1
0

0
21

2 1

( )i

i
i

Py EJ tg gy EJC
g Pg

EJ

= + (3.b)

1
0

31

1

sec( )i

i

Py EJ g
EJC

Pg
EJ

= − (3.c)

41 0C = where: 1

1

1
sec( )

cos( )
i

i

Pg
EJ Pg

EJ

=                                 (3.d) 

For the condition which connects the force P1 with the deformation ∆g in the form of an 
implicit function f(P1, ∆g), we  substitute the integration constants C11, C21, C31, and C41
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curved rod, which does not changing during processing. Finally, we obtain the following 
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deflection line exists and that  so-called ‘different’ buckling shapes occur, which will be 
discussed in the subsequent parts of this article. 

Figure 6. Determination of one of the points (P1, gi).

In this way we obtain one of the points (gi, P1) of the dependency P1 = f(∆g). Irrespective 
of determining the dependency P1 = f(∆g), it is also possible to draw  deflection lines for 
the bent rods by substituting the points (gi, P1) obtained into the rod deflection equation  
(2). In this way we obtain a rod deflection equation related to the point (gi, P1) in the 
following form: 
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The row of points (P1, ∆g = g0 – gi) determined in the above-described way consists of the 
mechanical characteristic P1 = f (∆g) of the compressed monofilament (Figure 7).

Figure 7. Mechanical characteristic P1 = f (∆g) of the compressed monofilament. 

The mechanical characteristic was calculated and drawn for the following parameter values: 
knitted fabric thickness g = 10 mm, rod rigidity EJ = 4.4 cNmm2, rod length lp = 15 mm, 
mutual displacement of the monofilament fastenings in the planes of the knitted fabric  y0 = 2 
mm. The curve has a strongly non-linear character with a large increase in the bending force 
P1 at the greatest rod deflections. The mechanical characteristic P1 = f (∆g) has a similar 
character to  the one obtained empirically [10]. Notwithstanding that the mathematical 
analysis carried out by us concerns a single monofilament, and thanks to the assumptions for 
the physical model accepted, we can obtain a general characteristic of the whole spatial 
knitted fabric. The force compressing the whole knitted fabric  should only be divided by the 
number of existing connectors, and for the force thus obtained, the mechanical characteristic 
P1 = f (∆g) would be designed. Data from comparable results attained by the mathematical 

 (7)

Equations 3, 4, 5 and 7.
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In this way we obtain one of the points 
(gi, P1) of the dependency P1 = f(∆g). Irre-
spective of determining the dependency 
P1 = f(∆g), it is also possible to draw de-
flection lines for the bent rods by substi-
tuting the points (gi, P1) obtained into the 
rod deflection equation (2). In this way
we obtain a rod deflection equation re-
lated to the point (gi, P1) in the following 
form (Equation 7).

The row of points (P1, ∆g = g0 – gi) de-
termined in the above-described way 
consists of the mechanical characteristic 
P1 = f (∆g) of the compressed monofila-
ment (Figure 6).

The mechanical characteristic was cal-
culated and drawn for the following pa-
rameter values: knitted fabric thickness 
g = 10 mm, rod rigidity EJ = 4.4 cNmm2, 
rod length lp = 15 mm, mutual displace-
ment of the monofilament fastenings in
the planes of the knitted fabric y0 = 2 
mm. The curve has a strongly non-lin-
ear character with a large increase in 
the bending force P1 at the greatest rod 
deflections. The mechanical character-
istic P1 = f (∆g) has a similar character 
to the one obtained empirically [10]. 
Notwithstanding that the mathemati-
cal analysis carried out by us concerns 
a single monofilament, and thanks to
the assumptions for the physical model 

accepted, we can obtain a general char-
acteristic of the whole spatial knitted 
fabric. The force compressing the whole 
knitted fabric should only be divided by 
the number of existing connectors, and 
for the force thus obtained, the mechani-
cal characteristic P1 = f (∆g) would be 
designed. Data from comparable results 
attained by the mathematical simulation 
and by experimental tests obtained with 
the use of a measuring stand specially 
designed by us are not included in this 
article, as the stand is actually used later 
in the investigation; however they will 
be the subject of the next publication.

For our simulation we accepted that the 
thickness of the compressed knitted fab-
ric would be g0 = 10 mm, and the rod-
connector would consist of a polyamide 
monofilament (JPA) of d = 0.14 mm. The
tensile elasticity modulus was assessed 
empirically with the use of tensile tester 
from Hounsfield. The value of the Young
modulus characterises the material of 
the rod tested . An increase in the Young 
modulus makes material more rigid, 
which means that it is not so susceptible 
to deformation, whereas a decrease in 
rod (polyamide monofilament) diameter
results in an increase in the modulus of 
inertia J of the cross-section of the bent 
object, and consequently an increase in 
rod rigidity. 

Figure 5. Determination of one of the 
points (P1, gi).

Figure 6. Mechanical characteristic 
P1 = f (∆g) of the compressed monofilament.

 Simulations of the compression 
process on the basis  
of the mathematical model

Aiming at the simulation of the compres-
sion process of a monofilament placed
in the internal layer of a spatial knitted 
fabric, two calculation algorithms were 
elaborated, one for calculating the com-
pression characteristic P1 = f (∆g), and 
the second for determining the curves 
representing the shape of the compressed 
rod. The calculations were carried out 
with the use of the MathCad computer 
program. As a result of the computer 
simulation, the deflection dependencies
were determined as a function of the rod 
length lp and rod rigidity EJ, illustrating 
the influence of these parameters on the
values of forces and deflections (Figures 
7 and 8). Figure 9 presents the curves 
P1 = f (∆g) for different values of the rod 
length. Only small differences are visible 
in the shape of the particular dependen-
cies. This results from the fact that the 
functions representing the deflection lines
of the rod in the model described have a 
similar shape, notwithstanding relatively 
great differences in the lengths (signifi-
cantly, the curvatures of the deflections
do not mutually differ).

The examples shown in Figure 7 indi-
cate that for various lengths lp and for 
the same value of the force P1 different 
deflections ∆g occur, or the opposite,
formulated for the same deflection ∆g
different forces P1 ,is also indicated. For 
example, if the deflection of a rod of
length lp = 12.5 mm equals ∆g = 7.5 mm, 
then the bending force is P1 ≅ 7.72 cN, 
whereas for a rod of length lp = 50 mm 
the force is P1 ≅ 6,71 cN. Thus we can 
conclude that the mutual relations be-
tween the force and deflection depend on
the length of the rod.

On the other hand, Figure 8 presents the 
dependencies P1 = f (∆g) for various ri-
gidity values EJ. In this figure it is clearly
visible that for various rigidities EJ of 
the rod and the same force P1, different 
deflections ∆g occur, or in the opposite
case, for the same deflection ∆g, different
forces P1 are indicated. For example, if for 
a rod with a rigidity of EJ = 1.1 cNmm2 
the deflection equals ∆g = 7mm, then the
bending force is P1 ≅ 1.2 cN, whereas for 
a rod with a rigidity of EJ = 20 cNmm2, 
the bending force will be P1 ≅ 1.2 cN. 
Thus means that the rigidity of the rod 
increases nearly 18 times, causing the 
resistance to mechanical loading or load 
capacity of the rod to increase 30 times .

Figure 7.  Dependencies P1 = f (∆g) for various 
values of the rod’s length: 1-for lp = 12 mm, 
2-for lp = 15 mm, 3-for lp = 20 mm, 4-for 
lp = 30 mm, 5-for lp = 50 mm.

Figure 8. Dependencies P1 = f (∆g) for various 
values of rod rigidity: 1-for EJ = 20,0 cN mm2, 
2-for EJ = 8,8 cN mm2, 3-for EJ = 4,4 cN mm2, 
4-for EJ = 2,2 cN mm2, 5-for EJ = 1,1 cN mm2.
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A simulation of the shape of monofila-
ments consisting of 3D knitted fabric, 
which are under the influence of the com-
pression force P1, was also carried out. 
The first of the simulations performed
illustrates the shape of a monofilament
under the influence of force P1.

From observation of the connector’s 
geometry, as well as the mathematical 
analysis performed, it can be concluded 
that the rod representing the monofila-
ment takes the shape of a fragment of a 
sinusoid. The shape of this sine curve de-
pends on the value of the force P1. With 
an increase in the force value, an increase 
in the amplitude of the curve also occurs, 
but the it tends to be narrower. The cause 
of P1 increasing is, from a physical point 
of view, a decrease in the curvature radius 
of the sinusoid’s apex. Figure 9 presents 
a broad spectrum of deflections caused
by the action of force P1.

The next simulation was carried out with 
the aim of finding the influence of the
distance knitted fabric’s geometry on the 
value of the compression force P1. It is 
important here to determine the influence
of this force on the mutual displacement 
of the connector’s (monofilament’s) ends
in the direction of the y-axis (parameter 
y0 is designated in Figure 4). Parameter 
y0 has three different values:
 for the symmetrical system y0 ≈ 0 mm, 

and
 for the asymmetrical system 

y0 = ± 2 mm.

Figure 10 presents 4 families of curves 
representing the shape of the monofila-
ment with the same deflections ∆g but
differentiated by the parameter y0.
 lines 1 – force P1 = 0.5 cN for yo = 2 mm, 

P1 = 0.4933 cN for y0 = 0 mm
  and P1 = 0.4862 cN for y0 = -2 mm,
 lines 2 – force P1 = 1.2 cN for y  = 2 mm, 

P1 = 1.193 cN for y0 = 0 mm
 and P1 =1.043 cN for y0 = -2 mm,
 lines 3 – force P1 = 6 cN for y0 = 2 mm, 

P1 =5.327 cN for y0 = 0 mm
 and P1 = 4.74 cN for y0 = -2 mm,
 lines 4 – force P1 =100 cN for y0 = 2 mm, 

P1 =85.96 cN for y0 = 0 mm
 and P1 = 74.41 cN for y0 = -2 mm,

The differences in the bending forces, 
which cause the same deflections, result
from the various geometries of the rods 
(parameter y0). The rods are differentiat-
ed by shape (different functions describe 
the shape of the curves), and with them 
are connected different curvature radii 

of these lines, which finally leads to the
situation that different forces cause the 
same deflection. The differences in the
force P1 values change with an increase 
in these values:beginning with small 
differences of P1 ,causing deflections
of ∆g = 0.615 mm, to relatively high 
differences in P1, which bring about de-
flections of e.g. ∆g = 9.287 mm. This
directly results from the dependency 
P1 = f (∆g); as for greater deflections the
curve is steeper. The analysis also al-
lows to state that the greatest value of 
P1 related to the same deflection falls
when the value of parameter y0 = 2 mm. 
From the point of view of geometry, this 
can be explained by the curvature radius 
of the sinusoid apex related to the shape 
of the connector, which reaches its 
smallest value at this parameter value. 
The smaller the curvature radius of the 
bent rod fragment, the higher the bend-
ing tensions are in this fragment. On 
the other hand, the force values, which 
cause this deflection, depend only on the
value of this spectacular (smallest) cur-
vature radius.

The third simulation concerns the influ-
ence of the monofilament’s shape on the
force compressing it. This is a problem 
of the so-called buckling form that takes 
place. This phenomenon consist in them 
that at equal deflections ∆g of the same
rod with the same geometry of end fas-
tenings some different values of force P1 
may be created.

Figure 11 presents the following differ-
ent forms of rod deflection created by the
impact of force P1:
 1-3 lines of the rod deflection under the

impact of bending force P1 with values 
of – 1.315 cN, 5.25 cN, amd 11.79 cN, 
causing deflections ∆g of 4 mm;

 2-3 lines of the rod deflection under
the impact of bending force P1 with 
values of – 3.065 cN, 12.25 cN, amd 
27.6 cN, causing deflections ∆g of
6 mm;

 3-3 lines of the rod deflection under
impact of bending force P1 with values 
of –12.7 cN, 50,07 cN, amd 116 cN, 
causing deflections ∆g of 8 mm.

From observation of the connector’s ge-
ometry, as well as from the mathemati-
cal analysis, it can be concluded the 
force causing a deflection in the case of
the first buckling form is more than four
times smaller than that in the case of the 
second buckling form, and eight times 
smaller than for the third case.

Figure 10. Families of curves representing 
the shape of monofilaments with the same
deflections ∆g, and differentiated by
parameter y0.

Thanks to the analysis carried out, it is 
visible that changes in the rigidity of the 
rod-connector have an significant influ-
ence on the character of the dependen-
cies P1 = f (∆g), as they cause a low 
number of changes in the shape of the 
dependencies; a significant displace-
ment to the left of the chart results in the 
same forces P1 causing a much smaller 
deflection ∆g.

Figure 9. Simulation of the rod’s deflection
lines under the impact of force P1, obtained 
using the mathematical program.
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Figure 11. Different shapes of rod deflection
caused by the action of force P1.



82 FIBRES & TEXTILES in Eastern Europe January / December / A 2008, Vol. 16, No. 5 (70)

The practical application importance of 
the above-described simulation results 
from the fact that the rod-connector, be-
ing an element of the knitted fabric, is 
not isolated. The neighbouring connec-
tors interact by contact, and the greater 
their number in the given volume of the 
knitted fabric, the greater the probability 
of such interaction is. Also the increase 
in deflection ∆g causes a decrease in
the volume of compressed rods. This, 
in turn, led to the mentioned increase in 
the probability of interaction between 
neighbouring monofilaments. Contact
between neighbouring monofilaments
causes the occurrence of higher forms of 
buckling, and this, in turn, increases the 
value of the compression force P1, caus-
ing the same deflection ∆g. From the
curves in Figure 11, it is visible that the 
trajectories related to equal deflections
∆g are mutually tangential , whereas the 
beginnings origins of the trajectories are 
tangential only for odd or even num-
bers.

 Summary
This article presents a physical and 
mathematical model of the process of 
compressing an elastic, slender rod of 
assumed shape fastened both sides by 
articulated joints. The model presented 
is related to the process of compressing 
a 3D distance knitted fabric, which we 
consider as a spatial trust.

1. The physical (mathematical) model is 
based on the following assumptions: 
the knitted fabric planes p1 and p2 are 
displaced in a perpendicular direction 
without deformation, the connectors 
are considered as elastic rods with a 
structure of spatial configuration , and
there are elements fastening both of 
the sides to the outside planes of the 
knitted fabric by articulated joints. 
On the basis of the physical model, a 
mathematical model was developed 
which is a differential normal equa-
tion of the 4th order. The solution of 
this equation at fulfilled boundary
conditions and the length condition 
of the rod (lp = constant) is the de-
flection line of the compressed rod.
The boundary conditions (integration 
coefficients C12, C21, C31, and C41) de-
termine the physical (mathematical) 
model accepted. As a result of the 
mathematical analysis carried out, we 
obtained the following two equations:

 an equation determining the set of 
points comprising the mechanical 

characteristic of the compressed rod, 
and

 an equation determining the shape of 
the compressed rod.

2. A computer simulation was carried 
out of the compression process of a 
model connector of the knitted fabric 
which included:

 elaboration of the mechanical charac-
teristic of the compressed monofila-
ment P1 = f (∆g),

 simulation of the influence of rod
length lp, and such structural param-
eters as rigidity EJ. the system’s char-
acteristic,

 the influence of the fastening geom-
etry of a singular monofilament on the
value of force P1, causing the mono-
filament’s deformation,

 Influence of different forms of buck-
ling of the compressed monofilament
which may occur on the value of de-
flection ∆g at the impact of compres-
sion force P1.

The simulation carried out demonstrated 
that:
 The mechanical characteristic ob-

tained is a strong non-linear curve; at 
this stage of the investigation we did 
not find a mathematical equation of
this curve which would connect the 
parameters of the system together.

 The change in parameter lp causes 
small changes in the mechanical char-
acteristic P1 = f (∆g); for example, for 
the compression force P1 = 5 cN, the 
deflection difference ∆g between the
lengths lp = 50 mm and lp = 12.5 mm 
amounts to 0.2 mm.

 A change in the parameter EJ causes 
great changes in the mechanical char-
acteristic P1 = f (∆g); for example, 
for the compression force P1 = 5 cN 
between rigidities EJ = 20 cN and  
EJ – 1.1 cN, the deflection changes
from ∆g = 5.7 mm to ∆g = 1.6 mm, 
respectively.

 A change in the parameter y0 (mutual 
displacement of the connector’s fas-
tening) influences the value of force
P1, e.g. from 3% of the P1 value for a 
deflection ∆g = 0.6 mm to 34% of P1 
for ∆g = 9.3 mm.

 For the third form of the buckling of 
the bent rod, the force P1 is more than 
200% greater in comparison with its 
value for the second buckling form, 
and more than 800% greater than for 
the first form for the same deflection
∆g (these values differ slightly for dif-
ferent deflection values).

 Conclusions
The investigations carried out should 
be treated as an introduction to further 
research aimed at determining an opti-
mum calculation model for 3D distance 
knitted fabrics. This involves determin-
ing the mechanical properties of such 
knitted fabrics, but firstly their suscep-
tibility or resistance to compressing 
must be evaluated. In further parts of 
our research, we will design and build 
an empirical testing model with the aim 
of verifying the correctness of the math-
ematical models already elaborated, as 
well as future, new models. The next 
stage will be the adaptation of the cal-
culation mechanism developed to solve 
real problems occurring while designing 
3D distance knitted fabrics., e.g. a case 
of spherical loading will also be consid-
ered.

This investigation carried out by us and 
presented herein of an element of 3D 
knitted fabric in the form of a single con-
nector, which means the elaboration of 
the mechanical characteristic of the com-
pression process for this connector and 
the determination of its shape will be the 
basis for further research – more general 
and dedicated to designing 3D distance 
knitted fabrics
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