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n Introduction 
To design woven fabrics and select and 
select their structural parameters, it is 
always necessary to evaluate the two 
dimensional matrix of the weave by one 
factor. This is the main problem that de-
signers face during the construction of a 
fabric structure. Back in the XIX century, 
in order to evaluate the two dimensional 
matrix of a weave, the average float F was 
proposed [1]. Later on was observed that 
this factor did not reflect all the properties 
of a weave, which are important from a 
technological and end-use point of view. 
This factor could not evaluate the differ-
ence between types of weaves (it is well 
known that the weaves twill 7/1, satin 8/3 
and panama 4/4 have a different tight-
ness, but are still counted with the same 

value, F = 4) and unbalanced weaves, 
whose average warp float is different 
from the average weft float (warp rib 4/4 
and weft rib 4/4 behave very differently 
during weaving but still evaluated using 
the same value, F = 2.5). As Brierley [2] 
notes, Armitage and Law were the first to 
take notice of it andintroduced correction 
factors depending on the kind of weave. 
The improvements in the weave factor 
that started at the beginning of the XXth 
century are still continuing. Other weave 
factors were proposed by Galceran [3], 
and Matsudaira [4]. The newest of them 
is the FYF [4], which was proposed by 
Matsudaira: it evaluates the length of 
parts of floats. In Brierly’s theory of max-
imum setting [2], the weave factor Fm 
is proposed. Index m is estimated in an 
experimental way depending on the type 
of weave. It is different for twills, satins, 
panamas and ribs. It shows the difference 
between some unbalanced weaves like 
warp and weft ribs. The limitation of use 
of the factor is predicted by the different 
value of m for different types of weaves. 
It can not be used for evaluation of all 
weaves nor be employed in CAD fabric 
systems. V. Milašius [5] proposed the 
weave factor P. It is calculated directly 

from the weave matrix and has excellent 
correlation with Brierley’s experimental 
factor Fm. Factor P is calculated in the 
same way for all weaves without special 
evaluation of the type of weave and can 
be used in CAD fabric systems. How-
ever, factor P is very good for balanced 
weaves but cannot evaluate the differ-
ence between unbalanced weaves – warp 
rib 4/4 and weft rib 4/4 have the same 
value, P = 1.205. Later on V. Milašius 
[6, 7] proposed factor P1, calculated in 
the warp direction. It covers most of the 
weaves used but can not be employed for 
calculating very unbalanced weaves [8] 
(for example, plain weave and weft rib 
4/4 have the same value, P1 = 1). The aim 
and innovation of this investigation is to 
explore various employments of factors 
P1 and P for all one-layer weaves, while 
maintaining the strong sides of both of 
them.

n Methods 
Experimental investigations were made 
on the basis of Brierley’s theory of 
maximum settings [2]. This theory was 
derived from the weaving of so-called 
square fabrics, where the linear density 
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of yarns and density of yarns on the loom 
in both directions are equal and unchang-
ing. Brierley defined that the experimen-
tal value of weave factor Pexp can be cal-
culated as: 

 
plainq

q

S
S

P
max

max
exp =               (1)

Brierley later proposed a model for eval-
uating not square fabrics according to 
which Pexp can be found as Equation (2).

During all weavings performed, the warp 
density did not change. Moreover, all the 
experiments were conducted with the 
same warp and weft yarns. In this case, 
T1 = T2 and S1 = S1plain, thus 
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here S2max – maximum pick density of 
tested weave, S2max plain – maximum 
pick density of a plain weave.
 
As the main aim of this investigation was 
to determine the influence of the level 
of unbalance of the weaves, the weaves 
selected presented the main types of bal-
anced weaves (for comparison with ear-
lier experiments of Brierley and other 
investigators and in order to obtain in-
formation on quality of this experiment), 
and various unbalanced weaves with a 
difference between P1 and P2 of up to 
63%, as in the case of warp and weft ribs 
4/4. During the experiment, the follow-
ing balanced weaves were tested: plain, 
twill, satin and panamas - with F ranged 
between 1 and 4. Unbalanced weaves can 
be found in modified basic weaves of all 
types, such as warp and weft ribs, irregu-
lar panamas, broken twills, diagonals, 
reinforced satin, and diagonal warp and 
weft ribs. Weaves were tested with a dif-
ference in the values of floats in the warp 
and weft directions from 0.5 (broken 
twill 2/2 and rib 2/1) to 3 (ribs 4/4). 

As was mentioned before, the result of 
our experiments was the maximum pick 
density for all tested weaves. It is very 
important that the maximum pick den-
sity will be estimated in a most precise 
way without any influence of the inves-
tigator. In our investigation the follow-
ing new method was used: by increasing 
the pick density on the loom, the pick 
density of the grey fabric also increas-
es. This occurs till the maximum limit 
of pick density is achieved. This means 
that permanent fell movement to the side 
of the reed side takes place till weaving 
becames impossible. When the limit is 
reached, a further increase in pick den-
sity on the loom does not take place nor 
an increase in the pick density of the 
grey fabric. Therefore, the pick density 
of grey fabric measured is considered as 
the maximum density of the fabric. In 
Figure 1 the results of such an experi-
ment for weft rib 4/4 are presented. We 
can state that the maximum pick density 
on the loom for weft rib 4/4 is 400/10 
cm. This method was used for estima-
tion of the maximum pick density for all 
tested weaves.

For the evaluation of the results obtained, 
the following criteria were used: 
n	 amax – maximum deviation of a single 

result in % 

n	 r - coefficient of correlation between 
measured and theoretical values

n	 dispersion of inadequacy: 

,

  here n – number of measurements 
(number of tested weaves), 

 neq – number of experimental coeffi-
cients in the formula 

n	 δ - and deviation of inadequacy in % 
according to the mean value: 

100
'P

Dinadeq
=δ

n Experimental investigations
The fabrics were woven with the follow-
ing data: the warp density of all samples 
produced was 354/dm (reed 118/3/dm), 
warp and weft yarns – filament polyester 
yarns 16.7 tex × 2. All weaves investi-

Figure 1. Estimation of the maximum pick 
densities for weft rib 4/4.

Table 1. Results of the weaves balanced by F.

Balanced by F weaves Fig. 2 P1 P2 S2max, dm-1 Pexp by (3)

Plain a 1 1 220 1.000
Twill 2/2 b 1.265 1.265 330 1.275
Satin 5/2 c 1.414 1.414 385 1.399
Panama 2/2 d 1.359 1.359 355 1.333
Panama 4/4 e 1.886 1.886 570 1.770

Figure 2. Weaves balanced by F: a – plain, 
b – twill 2/2, c – satin 5/2, d – panama 2/2,  
e – panama 4/4.

Figure 3. Weaves unbalanced by F: f – weft rib 2/2, g – weft rib 4/4, h – diagonal weft rib 
4/4, i – irregular panama A (warp 2/1 1/1, weft 4/4), j – irregular panama B (warp 2/2, weft 
4/4), k – warp rib 2/1, l – warp rib 2/2, m –  warp rib 4/4, n – diagonal warp rib 4/4, o – 
irregular panama C (warp 4/4, weft 2/1 1/1), p – irregular panama D (warp 4/4, weft 2/2), 
q – reinforced satin, r – broken weft twill 2/2, s – weft diagonal 3/2 1/2, t – weft diagonal 4/3 
2/3, u –  broken warp twill 2/2, v – warp diagonal 4/3 2/3, w – warp diagonal 4/4.
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gated were divided into two groups: the 
first – weaves balanced by F, i.e., weaves 
with F1 = F2 (Figure 2) and the second 
- weaves unbalanced by F with F1 ≠ F2 
(Figure 3). 
 
The data of weaves balanced by F and 
their maximum pick densities S2max on 
the loom are listed in Table 1.

The comparison of the experimental 
value Pexp calculated according to (3) 
with earlier proposed values [6 - 8] of P1 
shows very good results – amax = 6.5 %, 
r = 0.997, Dinadeq = 0.00287, δ = 3.95 %. 
These parameters prove there is an ex-
cellent correlation between the results 
of this investigation and those obtained 
by Brierley more than 75 years ago, in 
which he used a very different loom 
with very different yarns: Brierley wove 
worsted yarns on a shuttle loom, whereas 
our results were obtained from the weav-
ing of synthetic filament yarns on a rapier 
loom. We stated that the tension of warp 
and weft threads did not have an influ-
ence on the experimental value of the 
weave factor. It is only important to keep 
the tension stable during all weavings 
Undoubtedly, the tensions of yarns dur-
ing this experiment and those of Brierley 
were very different, but the results have 
excellent correlation. 
 
In Table 2 the results of weaves unbal-
anced by F are listed. 

Comparison of the experimental value 
Pexp calculated according to (3) with ear-
lier proposed values [6 - 8] P1 for weaves 
unbalanced by F (Table 2) shows very 
great differences between some specific 
weaves, and low correlation of the model 
Pexp = f(P1) - amax = -30.1%, r = 0.789, 
Dinadeq = 0.03114, δ = 12.43%. Factor 
P1 is workable for the evaluation of all 
weaves except those, where P2 is 20-25% 
higher than P1. This mainly concernsto 
weft ribs and irregular panamas made on 
the basis of weft ribs, with the exception 
of the following weaves: (marked in Ta-
ble 2 by *) Pexp=f(P1) - amax = -7.9%,  
r = 0.973, Dinadeq = 0.00306, δ = 3.84%. 
After elimination of the weaves marked 
by *, the deviation of results is very close 
to that of balanced weaves. Therefore, 
factor P1 was can be easily implemented 
into the CAD system [7].

In this investigation a new method of cal-
culating the weave factor P is proposed. It 
was assumed that for balanced weaves the 
newly calculated P’ must be equal to P. 

Firstly, two models were evaluated:

P’ = P1a P2(1-a)              (4)

and

P’ = a P1 + (1-a) P2          (5)

here a – experimental coefficient. 

In both formulas, in the case of balanced 
weaves, where P = P1 = P2, P’ = P, it 
was indicated by the least square meth-
od, that the best results are obtained by 
formula (5) with a value of a = 0.712, 
Pexp = f(P‘) - amax = -17.5%, r = 0.878, 
Dinadeq = 0.01764, and δ = 9.35%. 

Notwithstanding the above-mentioned 
statement, an analysis of the results 
shows that the greatest difference be-
tween experimental and theoretical val-
ues was observed for the most unbalanced 
weaves, in which factor P calculated in 
one direction exceeds that calculated in 
another direction by 50% or more. After 
elimination of these weaves (marked in 
Table 2 by **), amax = -6.8%, r = 0.976,  
Dinadeq = 0.00266, and δ = 3.82 %.

It is very important that for all signifi-
cantly unbalanced weaves, the theo-
retical P’ calculated from formula (5) 
is lower than the experimental one. 

Table 2. Results of weaves unbalanced by F.

Weaves unbalanced by F Notes Fig. 3 P1 P2 S2max, dm-1 Pexp by (3)

Weft rib 2/2 * F 1.000 1.309 245 1.067
Weft rib 4/4 * & ** G 1.000 1.633 400 1.431
Diagonal weft rib 4/4 * & ** H 1.050 1.611 390 1.410
Irregular panama A (warp 2/1 1/1,  
weft 4/4) * & ** I 1.112 1.690 430 1.495

Irregular panama B (warp 2/2, weft 4/4) * J 1.386 1.789 455 1.547
Warp rib 2/1 K 1.177 1.000 285 1.168
Warp rib 2/2 L 1.309 1.000 345 1.31
Warp rib 4/4 ** M 1.633 1.000 520 1.676
Diagonal warp rib 4/4 ** N 1.611 1.050 510 1.656
Irregular panama C (warp 4/4,  
weft 2/1 1/1) ** O 1.690 1.112 530 1.695

Irregular panama D (warp 4/4, weft 2/2) P 1.789 1.386 535 1.704
Reinforced satin 8 * Q 1.333 1.680 430 1.495
Broken weft twill 2/2 R 1.180 1.276 275 1.143
Weft diagonal 3/2 ½ S 1.109 1.286 300 1.205
Weft diagonal 4/3 2/3 * T 1.171 1.488 325 1.264
Broken warp twill 2/2 U 1.276 1.180 315 1.240
Warp diagonal 4/3 2/3 V 1.488 1.171 420 1.474
Warp diagonal 4/4 W 1.680 1.333 470 1.577

Table 3. Comparison of experimental weave factors and those calculated by equation (9) 
of weaves unbalanced by F. 

Weaves unbalanced by F P1 P2 P’ by (9) Pexp by (3)

Weft rib 2/2 1.000 1.309 1.118 1.067
Weft rib 4/4 1.000 1.633 1.434 1.431
Diagonal weft rib 4/4 1.050 1.611 1.386 1.410
Irregular panama A (warp 2/1 1/1, weft 4/4) 1.112 1.690 1.470 1.495
Irregular panama B (warp 2/2, weft 4/4) 1.386 1.789 1.566 1.547
Warp rib 2/1 1.177 1.000 1.131 1.168
Warp rib 2/2 1.309 1.000 1.249 1.310
Warp rib 4/4 1.633 1.000 1.702 1.676
Diagonal warp rib 4/4 1.611 1.050 1.623 1.656
Irregular panama C (warp 4/4, weft 2/1 1/1) 1.690 1.112 1.715 1.695
Irregular panama D (warp 4/4, weft 2/2) 1.789 1.386 1.737 1.704
Reinforced satin 1.333 1.680 1.474 1.495
Broken weft twill 2/2 1.180 1.276 1.208 1.143
Weft diagonal 3/2 1/2 1.109 1.286 1.166 1.205
Weft diagonal 4/3 2/3 1.171 1.488 1.294 1.264
Broken warp twill 2/2 1.276 1.180 1.249 1.240
Warp diagonal 4/3 2/3 1.488 1.171 1.428 1.474
Warp diagonal 4/4 1.680 1.333 1.621 1.577
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Therefore, a factor of unbalancing U 
was added to formula (5):

P’ = a P1 + (1 - a) P2 + U       (6)

Two models were evaluated for determi-
nation offactor U:

U = b ABS (P1 – P2)           (7)
and

U = [ABS (P1 – P2)]b          (8)

here b – experimental coefficient.

It was indicated by the least square meth-
od, that the best results are obtained by 
formula (8) with b = 3.02. Finally, the 
new model for calculation of the weave 
factor P’ is described by the following 
equation:

P’ = a P1 + (1 - a) P2 + 
+ [ABS (P1 – P2)]b = 

= 0.712 P1 + 0.288 P2 +         (9)

+ [ABS (P1 – P2)]3.02

The results are presented in Table 3.

According to (9), Pexp = f(P‘) - amax = 
= 5.7%, r = 0.984, Dinadeq = 0.00148, and 
δ = 2.71%. Model (9) shows excellent 
correlation between experimental and 
theoretical values of the weave factor. 
The value can be calculated more simply 
using equation (10) in order to obtain a 
quick result:

P’ = 0.7 P1 + 0.3 P2 + 
+ [ABS (P1 – P2)]3         (10)

For all the tested weaves – balanced and 
unbalanced – from formula (9), we ob-

tain Pexp=f(P‘) - amax = 6.5%, r = 0.984, 
Dinadeq = 0.00181, and δ = 3.03%. 

In Table 4 statistical data of all the ex-
periments carried out in this investiga-
tion are presented. The results show that 
formula (9) is the most precise for evalu-
ation of all one-layer weaves. All of the 
other models presented might be used but 
with a limitations of the area of employ-
ment, as was mentioned earlier. Applying 
these models to all weaves gives unsatis-
factory results. The formula proposed (9) 
provides excellent correlation with ex-
perimental results for all weaves tested.

It is worth noting that the new model 
(9) for calculating the weave factor P’ is 
built by using only two experimental co-
efficients a and b. 

The calculation of weave factors P1 and 
P2 is very complicated and time consum-
ing when done by hand. Free access to a 
file detailing their calculation can be found 
on the following website http://www.
textiles.ktu.lt/Pagr/En/Cont/pagrE.htm.

n Conclusions 
A new idea for calculating the weave 
factor of one-layer weaves balanced and 
unbalanced by F is presented and proved. 
Factor P’ represents the integrated mean 
of weave factors calculated in warp P1 
and weft P2 directions with their differ-
ent weights, respectively, as well as the 
mean of unbalancing factor U. Factor 

Table 4. Statistical data of the results.

Note amax, % r Dinadeq δ, %

Weaves balanced by F – Pexp = f(P1)    6,5 0,997 0,00287   3,95

Weaves unbalanced by F – Pexp = f(P1)
all tested -30,1 0,789 0,03114 12,43
not marked by *   -7,9 0,973 0,00306   3,84

Weaves unbalanced by F – Pexp = f(P‘)  
formula (5)

all tested -17.5 0,878 0,01764   9,35
not marked by **   -6.8 0.976 0.00266   3.82

Weaves unbalanced by F – Pexp = f(P‘)  
formula (9)    5,7 0,984 0,00148   2,71

All tested weaves – Pexp = f(P‘) formula (9)    6.5 0,984 0,00181   3.03

Received 14.02.2008       Reviewed 05.05.2008

U has an absolute mean value irrespec-
tive of which factor – (P1) or (P2) – has 
a higher value. The importance of U is 
sufficient when one of the factors P1 and 
P2 exceeds the other one by 40 - 50% or 
more. The newly presented factor P’ is 
calculated from the weave matrix by us-
ing only two experimental coefficients:  
a = 0.712 and b = 3.02, which are con-
stant for all one-layer weaves irrespec-
tive of the type of weave and degree of 
unbalancing. Factor P’ does not depend 
on the raw material of yarns nor on the 
type of loom. Excellent correlation be-
tween factor P’ between Brierley’s factor 
Fm was indicated, and due to the univer-
sality of all one-layer weaves (balanced 
and unbalanced), it can be used without 
any variable experimental coefficients 
for calculation of any of the two dimen-
sional matrices of one-layer weave.
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