Introduction

The lifestyle of modern man, especially the ease of international travel and the new materials used for making clothes and articles for everyday use, contribute to the growth and rapid dissemination of various infections, dermatological diseases, and various allergies, including the allergy to mites [1]. One out of four people in Poland is allergic to one or more of these factors, but in 80% of cases the allergy is caused by mites living in bedclothes (blankets, quilts, cushions) [2, 3]. The usual practice today is to treat the effects of the disease, but more and more frequently recourse is made to preventive measures, the more so as new-generation manmade fibres (polyester, acrylic, polypropylene, polyamide, polyvinyl-chloride) which have anti-microbial properties are available [4 - 8]. Textiles made from or with such fibres act preventively by inhibiting the growth of bacteria and fungi, thus reducing the population of mites and the production of their allergens. The production of antimicrobial fibres was started only in the late 1990s. For instance, the production of a new generation of the polyacrylonitrile fibres was started when the laboratories of Courtaulds Ltd developed a method of introducing into the fibre mass oily medical preparations which are introduced to the fibre mass. The medical preparation is slowly released onto the surface by diffusion, and provides a permanent thin layer of active substance on the surface of the textile product. The preparations added to Amicor Plus are Triclosan, which is antibacterial, and Tolnaftate, which is anti-fungal. The physical and mechanical properties of Amicor Plus are similar to those of the standard PAN, and the blending possibilities are also similar [9].

Scope of research

The general aim was to determine the effect of the Amicor-Plus component on the anti-microbial and anti-mite properties of the blankets produced. The following aspects were investigated:

- the effect of dying the Amicor Plus fibre on its anti-microbial properties;
- the manufacture of yarns from blends of standard PAN and Amicor Plus in various proportions, and making the yarns into woven blanket fabrics;
- determining the optimum proportion of the anti-microbial fibre in the blanket for the best anti-bacterial and anti-fungal effect;
- the effect of the use of blankets made with Amicor Plus on the health condition of patients with mite allergy.

The microbiological tests for the Amicor-Plus fibre and blankets were performed at the accredited Microbiological Laboratory of the Institute of Mammade Fibres, Łódź. The anti-mite properties of the blankets made with Amicor Plus were tested at the Allergology Centre, Łódź.

Materials

The materials tested were:

- the anti-microbial fibre Amicor Plus 3.3 dtex and 6.7 dtex; certified under Öko-Tex Standard 115 complying with European Standard EN71, part 3; and British Standard BS5736 [14];
- woven blanket cloth of area weight 400 g/m², experimentally made with 20%, 30%, and 40% Amicor Plus in the blanket pile.

The reference materials were PAN fibres Dralon 3.3 dtex and 6.7 dtex, and a woven fabric made with these fibres.

Methods

Microbiological tests

The microbiological tests of the Amicor Plus fibre, non-dyed and dyed, and the blanket fabrics with various proportions of this fibre, were based on the following standards:

2. Testing method for antibacterial of...

- a quantity test;
- control organisms Trichophyton mentagrophytes LOCK 0572, and Aspergillus niger (ATCC 6275)

Performance test of blankets made with Amicor Plus

The test of the blankets’ practical resistance of to allergens was based on practical performance tests and analysis under ambulatory clinic conditions at the Allergology Centre, Lodz. The test involved 28 patients from 3 to 76 years old with symptoms characteristic of mite allergy. For practical use we selected blankets made with 20% and 40% of Amicor Plus. Each variant of blanket was used by 14 persons individually for 1 month. Each day, while using the blanket, the patient evaluated the intensity of his/her allergic symptoms on a scale, grading the intensity from 0 to 10 (maximum intensity). In addition, the population of allergens in the patient’s bed was determined by the Acarex test before and after use of the blanket [12].

Experiments

Dyeing of Amicor Plus

The fibre Amicor Plus and the reference fibre Dralon were dyed under laboratory conditions with the following dyes:

- Astrapzon - Bayer (Germany);
- Oleacryl - Olea (France).

The dyeing process was similar for the fibres. The recipes for dyeing Amicor Plus and Dralon to a pale-blue colour are presented in Table 1.

Making the blanket cloth

Three variants of a blanket cloth of an area weight of 400 g/m² were made on a 300-cm wide Nuovo Pignone rapier loom. The raw-material composition of the yarns used for the three variants is described in Table 3.

Results and discussion

Effect of dyeing on the anti-microbial properties of Amicor Plus

The anti-bacterial properties of Amicor Plus, as manifested before and after dyeing, are described in Table 4. The microbiological tests of Amicor Plus 3.3 dtex and 6.7 dtex which were performed showed that after dyeing, the bacteriostatic and bactericidal activity of the fibres remained at a high level.

The results of the tests for inhibiting the growth of Aspergillus niger on Amicor Plus and Dralon to a pale-blue colour are presented in Table 1.

Making yarn with Amicor Plus

To determine the optimum proportion of Amicor Plus in the blanket, 250 tex yarns containing 20%, 30%, and 40% of the fibre were produced. The raw-material composition of the blanks is given in Table 2.

All yarns were manufactured on a processing line comprising:

- an opening and blending line composed of machines and devices supplied by BeFaMa and Falubaz;
- a card set (type CW 642-08/E), and a sliver-forming and taking-up device (type PS-KDV 2);
- an Elitex draw frame (type PS-KDV 2);
- An Elitex rotor-spinning machine type BDA 12 N.

Table 1. Antibacterial activity of Amicor Plus after dyeing (against of Escherichia coli).

<table>
<thead>
<tr>
<th>Dyes</th>
<th>Fibres</th>
<th>Time, h</th>
<th>Count of bacteria on sample, cfu*</th>
<th>Bacteriostatic activity log (B/C)</th>
<th>Bactericidal activity log (A/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>before after before after</td>
<td>before after before after</td>
<td>before after before after</td>
</tr>
<tr>
<td>Astrazon</td>
<td>Dralon – control sample /A/</td>
<td>0</td>
<td>3.2×10⁵ 2.3×10⁵</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td></td>
<td>Dralon – control sample /B/</td>
<td>24</td>
<td>9.5×10⁷ 1.6×10⁷</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td></td>
<td>Amicor Plus 3.3 dtex /C/</td>
<td>24</td>
<td>2.6×10⁵ 6.0×10⁴</td>
<td>2.6 3.4</td>
<td>0.1 0.7</td>
</tr>
<tr>
<td></td>
<td>Amicor Plus 6.7 dtex /C/</td>
<td>24</td>
<td>2.0×10⁴ 4.7×10⁴</td>
<td>3.7 3.5</td>
<td>1.2 0.8</td>
</tr>
<tr>
<td>Oleacryl</td>
<td>Dralon – control sample /A/</td>
<td>0</td>
<td>3.2×10⁵ 2.3×10⁵</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td></td>
<td>Dralon – control sample /B/</td>
<td>24</td>
<td>9.5×10⁷ 1.7×10⁷</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td></td>
<td>Amicor Plus 3.3 dtex /C/</td>
<td>24</td>
<td>2.6×10⁵ 1.7×10⁵</td>
<td>2.6 3.0</td>
<td>0.1 0.1</td>
</tr>
<tr>
<td></td>
<td>Amicor Plus 6.7 dtex /C/</td>
<td>24</td>
<td>2.0×10⁴ 5.2×10⁴</td>
<td>3.7 3.5</td>
<td>1.0 0.7</td>
</tr>
</tbody>
</table>

* - colony forming units; the sign (-) indicate that the control samples are not characterized by bacteriostatic and bactericidal activity.
Plus after dyeing shows that while there was no growth directly on the fibres, no growth-inhibiting zone could be clearly observed. Therefore, in relation to this fungus, the fibre was ranked as ‘medium’. However, it showed an excellent inhibition of the growth of *Trichophyton mentagrophytes*. After dyeing, Amicor Plus demonstrates a high fungicidal activity, forming a fungus growth inhibition zone around it both when dyed with Bayer or Olea dyes. On the other hand, the Dralon fibre after dyeing remains non-inhibitive to fungi. The high resistance of the Amicor Plus fibre after dyeing to the growth of *Trichophyton mentagrophytes* is demonstrated by the photographs of plates with Amicor Plus fibres made after 7 days of the test (Figure 1).

Effect of Amicor Plus proportion in blanket cloth on its anti-microbial properties

The results of the tests of the bacteriostatic and bactericidal activity of blankets made with various proportions of Amicor Plus are presented in Table 5.

The results of tests of the bacteriostatic and bactericidal activity of blankets made with various proportions of Amicor Plus showed the following relationship between the anti-bacterial activity and proportion of the fibre in the blanket cloth; the higher was the proportion of Amicor Plus in the blanket pile, the smaller was the growth and count of bacteria on the test sample.

Regarding the anti-fungal properties of blankets made with varied proportions of Amicor Plus, the tests showed that proportions between 20 and 40 percent created comparable growth-inhibiting conditions for *Trichophyton mentagrophytes*.

Table 5. Antibacterial activity of blankets made with different proportions of Amicor Plus (against Escherichia coli).

<table>
<thead>
<tr>
<th>Weft in the fabrics</th>
<th>Time, h</th>
<th>Count of bacteria on sample x 10^7</th>
<th>Bacteriostatic activity log (B/C)</th>
<th>Bactericidal activity log (A/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dralon 100% – control sample /A/</td>
<td>0</td>
<td>2.8×10^6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dralon 100% – control sample /B/</td>
<td>24</td>
<td>7.4×10^7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amicor Plus 20% + Dralon 80% /C/</td>
<td>24</td>
<td>2.2×10^6</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Amicor Plus 30% + Dralon 70% /C/</td>
<td>24</td>
<td>1.2×10^6</td>
<td>1.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Amicor Plus 40% + Dralon 60% /C/</td>
<td>24</td>
<td>5.2×10^5</td>
<td>2.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

* - colony-forming units.
According to the visual evaluation of the symptom scale (4.5 points per patient on average). After using the blankets for one month, the number of points was reduced to 68 (2.4 points per patient), while no significant differences were observed in the general feeling depending on the proportion of Amicor Plus in the blanket. A significant improvement in general feeling was declared by 61% of the test patients suffering from mite allergy [12]. The counts of allergens in the patients’ beds, made before and after the monthly use of Amicor Plus-enhanced blankets, confirmed that the growth of the mite population responsible for the allergy was inhibited [13]. The level of allergen incidence in the test group is shown in Figure 4.

The tests made at the Allergology Centre showed that the blankets made with Amicor Plus reduced the high and medium concentrations of allergens in the patients’ beds. The high concentration occurred with 46% of the test patients. No medium concentration of allergens occurred, although 40% had a low concentration, and no allergens were found with 14% of the patients. The results of the tests are correlated with the reports of general feeling, and provide evidence that a 20% content of Amicor Plus was enough to make the blanket helpful in the treatment of allergy to mites, and in preventing this allergy. There is also evidence that the blankets do not induce any allergic reactions of the skin.

Conclusions

1. The bioactive fibre Amicor Plus can be used in blends, both non-dyed (raw-white) and dyed to any colour, since the dyeing process does not have any negative effect on the antimicrobial properties of this fibre.

2. There are no technological problems with the production of blend PAN/Amicor-Plus yarns with a linear density of 250 tex, or with making the yarns into blanket fabrics of an area weight of 400 g/m².

3. The blankets made with 20%, 30% or 40% of Amicor Plus have antibacterial and anti-fungal properties. The microbiological activity of the blankets can be characterised as follows:
 - antibacterial activity is more intensive, when the proportion of Ami-
cor Plus is higher. If the blanket cloth is made with 40% Amicor Plus, its bacteriostatic activity is 1.5 times higher, and its bactericidal potential is 7 times higher than if the Amicor-Plus content is 20%; inhibition of the growth of the fungi Aspergillus niger and Trichophyton mentagrophytes on blankets is already at a higher level, after the addition of 20% of Amicor Plus to the blanket.

4. According to the practical performance tests made by the Allergology Centre, the blankets made with 20% and 40% Amicor Plus inhibit the growth of mites, and are therefore suitable for use in preventing mite allergy. They aid the treatment of mite allergy, and do not induce any allergic reactions of the skin.

Acknowledgments
The research material presented is an outcome of Project No 7 TO8E 679 2000 C/5035, subsidised by Komitet Badań Naukowych (the Government Committee for Research). The author extends her thanks to:
1. The Institute of Chemical Fibres, Łódź, for the microbiological tests;
2. The manufacturing company Zwoltext (Zduńska Wola, Poland) for affording the possibility to make yarns and fabrics under industrial conditions, and for starting the production of blankets with Amicor Plus;
3. Prof K. Buczyłko, manager of the Allergology Centre, Łódź, for carrying out the performance tests.

References

Received 16.12.2005 Reviewed 04.05.2006